Advertisement

New Strategies for the Simulationof the Flow in Three Dimensional Poro-Fractured Media

  • Stefano Berrone
  • Andrea Borio
  • Sandra Pieraccini
  • Stefano Scialò
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)

Abstract

Two novel approaches are presented for dealing with three dimensional flow simulations in porous media with fractures: one method is based on the minimization of a cost functional to enforce matching conditions at the interfaces, thus allowing for non conforming grids at the interfaces; the other, instead, takes advantage of the new Virtual Elements to easily build conforming polygonal grids at the fracture-porous matrix interfaces. Both methods are designed to minimize the effort in mesh generation process for problems characterized by complex geometries. The methods are described in their simplest fashion in order to keep the notation as compact and simple as possible.

Notes

Acknowledgements

This work has been partially supported by INdAM-GNCS and by Politecnico di Torino through project Starting Grant RTD. Computational resources were partially provided by HPC@POLITO (http://hpc.polito.it). All the authors are members of the INdAM Research group GNCS.

References

  1. 1.
    B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Mod. Methods Appl. Sci. 26(04), 729–750 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, The virtual element method for discrete fracture network flow and transport simulations, in ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, vol. 2 (2016), pp. 2953–2970Google Scholar
  5. 5.
    M. Benedetto, S. Berrone, S. Scialò, A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elem. Anal. Des. 109, 23–36 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Berrone, S. Pieraccini, S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35(2), B487–B510 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Berrone, S. Pieraccini, S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35(2), A908–A935 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Berrone, S. Pieraccini, S. Scialò, An optimization approach for large scale simulations of discrete fracture network flows. J. Comput. Phys. 256, 838–853 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Berrone, S. Pieraccini, S. Scialò, Towards effective flow simulations in realistic discrete fracture networks. J. Comput. Phys. 310, 181–201 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Berrone, S. Pieraccini, S. Scialò, Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis. Comput. Methods Appl. Mech. Eng. 315, 1098–1112 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Berrone, S. Pieraccini, S. Scialò, Flow simulations in porous media with immersed intersecting fractures. J. Comput. Phys. 345, 768–791 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. Martin, J. Jaffré, J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefano Berrone
    • 1
  • Andrea Borio
    • 1
  • Sandra Pieraccini
    • 1
  • Stefano Scialò
    • 1
  1. 1.Politecnico di TorinoTurinItaly

Personalised recommendations