Numerical Benchmarking for 3D Multiphase Flow: New Results for a Rising Bubble

  • Stefan TurekEmail author
  • Otto Mierka
  • Kathrin Bäumler
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


Based on the benchmark results in Hysing et al (Int J Numer Methods Fluids 60(11):1259–1288, 2009) for a 2D rising bubble, we present the extension towards 3D providing test cases with corresponding reference results, following the suggestions in Adelsberger et al (Proceedings of the 11th world congress on computational mechanics (WCCM XI), Barcelona, 2014). Additionally, we include also an axisymmetric configuration which allows 2.5D simulations and which provides further possibilities for validation and evaluation of numerical multiphase flow components and software tools in 3D.



The financial support of DFG (SPP 1740) is gratefully acknowledged (TU 102/53-1). The computations have been carried out on the LiDOng cluster at TU Dortmund University. We would like to thank the LiDOng cluster team for their help and support.


  1. 1.
    S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. Bäumler, Simulation of single drops with variable interfacial tension, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2014Google Scholar
  3. 3.
    J. Adelsberger, P. Esser, M. Griebel, S. Groß, M. Klitz, A. Rttgers, 3D incompressible two-phase flow benchmark computations for rising droplets, in Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, 2014Google Scholar
  4. 4.
    S. Turek, O. Mierka, S. Hysing, D. Kuzmin, Numerical study of a high order 3D FEM-Level Set approach for immiscible flow simulation, in Computational Methods in Applied Sciences, ed. by S. Repin, T. Tiihonen, T. Tuovinen (Springer, Dordrecht, 2013), pp. 65–91Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Applied Mathematics (LS3)TU Dortmund UniversityDortmundGermany
  2. 2.Department of RadiologyStanford UniversityStanfordUSA

Personalised recommendations