Convergence of Adaptive Finite Element Methods with Error-Dominated Oscillation

  • Christian KreuzerEmail author
  • Andreas Veeser
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


Recently, we devised an approach to a posteriori error analysis, which clarifies the role of oscillation and where oscillation is bounded in terms of the current approximation error. Basing upon this approach, we derive plain convergence of adaptive linear finite elements approximating the Poisson problem. The result covers arbritray H−1-data and characterizes convergent marking strategies.



AV gratefully acknowledges the support of the GNCS, which is a part of the Italian INdAM.


  1. 1.
    P. Binev, R. DeVore, Fast computation in adaptive tree approximation. Numer. Math. 97(2), 193–217 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Binev, W. Dahmen, R. DeVore, P. Petrushev, Approximation classes for adaptive methods. Serdica Math. J. 28(4), 391–416 (2002). Dedicated to the memory of Vassil Popov on the occasion of his 60th birthdayGoogle Scholar
  3. 3.
    C. Carstensen, M. Feischl, D. Praetorius, Axioms of adaptivity. Comput. Math. Appl. 67(6), 1195–1253 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Cohen, R. DeVore, R.H. Nochetto, Convergence rates of AFEM with H −1 data. Found. Comput. Math. 12(5), 671–718 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Diening, C. Kreuzer, R. Stevenson, Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16(1), 33–68 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F.D. Gaspoz, P. Morin, Approximation classes for adaptive higher order finite element approximation. Math. Comput. 83(289), 2127–2160 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Kreuzer, A. Veeser, Oscillation in a posteriori error estimation. (in preparation)Google Scholar
  8. 8.
    P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18(5), 707–737 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R.H. Nochetto, A. Veeser, Primer of adaptive finite element methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics, vol. 2040 (Springer, Heidelberg, 2012), pp. 125–225Google Scholar
  10. 10.
    K.G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31(3), 947–970 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technische Universität DortmundFakultät für MathematikDortmundGermany
  2. 2.Università degli Studi di MilanoDipartimento di Matematica F. EnriquesMilanoItaly

Personalised recommendations