Evolution of Load-Bearing Structures with Phase Field Modeling

  • Ingo MuenchEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


We suggest an algorithm to generate the topology of load-bearing structures with help of a phase field model. The objective function homogenizes equivalent stress within the isotropic elastic material. However, local inhomogeneities in the stress field, e.g., at concentrated loads, do not distract the convergence of the algorithm. Beside a certain threshold in the equivalent stress field, the desired filling level of the design space is the main parameter of our objective function. The phase field parameter describes the density and stiffness of the substance in a closed interval. An Allen-Cahn equation regulates the phase transition, which is not conserving the mass of the system. The model evolves continuous regions of voids or dense material, whereas voids retain an infinitesimal residual stiffness, which is a million times smaller than the stiffness of the dense material. The evolution of structures is discussed by numerical examples.


  1. 1.
    G. Allaire, F. Jouve, A. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Bendsøe, Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)CrossRefGoogle Scholar
  3. 3.
    M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Cahn, S. Allen, A microscopic theory for domain wall motion and its experimental verification in fe-al alloy domain growth kinetics. J. de Physique Colloques 38(C7), 51–54 (1977)Google Scholar
  5. 5.
    J. Deaton, R. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology optimization for continua. Struct. Multidiscip. Optim. 41(4), 605–620 (2010)CrossRefGoogle Scholar
  7. 7.
    I. Münch, Ch. Gierden, W. Wagner, A phase field model for stress based evolution of load-bearing structures. Int. J. Numer. Methods Eng., 1–21 (2018). Scholar
  8. 8.
    D. Munk, G. Vio, G. Steven, Topology and shape optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. 52, 613–631 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Rozvany, On design-dependent constraints and singular topologies. Struct. Multidiscip. Optim. 21(2), 164–172 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    O. Sigmund, K. Maute, Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    N. van Dijk, K. Maute, M. Langelaar, F. van Keulen, Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations