The Discrete Relations Between Fields and Potentials with High Order Whitney Forms

  • Ana M. Alonso RodríguezEmail author
  • Francesca Rapetti
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


When using the lower order Whitney elements on a simplicial complex, the matrices describing the external derivative, namely, the differential operators gradient, curl and divergence, are the incidence matrices between edges and vertices, faces and edges, tetrahedra and faces. For higher order Whitney elements, if one adopts degrees of freedom based on moments, the entries of these matrices are still equal to 0, 1 or − 1 but they are no more incidence matrices. If one uses instead the “weights of the field on small simplices” as alternative degrees of freedom, the matrices representative of the external derivative are incidence matrices for any polynomial degree.



Ana Alonso Rodríguez thanks the Laboratoire de Mathématiques J.A. Dieudonné, Université Côte d’Azur, Nice, France, where this work started.


  1. 1.
    D.N. Arnold, Spaces of finite element differential forms, in Analysis and Numerics of Partial Differential Equations. Springer INdAM Series, vol. 4 (Springer, Berlin, 2013), pp. 117–140Google Scholar
  2. 2.
    D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Bossavit, Generating Whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38, 341–344 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Bossavit, Computational Electromagnetism (Academic, San Diego, CA, 1998)zbMATHGoogle Scholar
  5. 5.
    S.H. Christiansen, F. Rapetti, On high order finite element spaces of differential forms. Math. Comput. 85, 517–548 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    J.-C. Nédélec, Mixed finite elements in R 3. Numer. Math. 35, 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Rapetti, A. Bossavit, Geometrical localization of the degrees of freedom for Whitney elements of higher order. IEE Proc. Sci. Meas. Technol. 1, 63–66 (2007). Issue on “Computational Electromagnetism”Google Scholar
  8. 8.
    F. Rapetti, A. Bossavit, Whitney forms of higher degree. SIAM J. Numer. Anal. 47, 2369–2386 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Mathematics, vol. 606 (Springer, Berlin, 1977), pp. 292–315Google Scholar
  10. 10.
    H. Whitney, Geometric Integration Theory (Princeton University Press, Princeton, NJ, 1957)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dip. di Matematica, Università degli Studi di TrentoPovo, TrentoItaly
  2. 2.Dep. de Mathématiques J.-A. Dieudonné, Univ. Côte d’AzurNiceFrance

Personalised recommendations