Trefftz-Discontinuous Galerkin Approach for Solving Elastodynamic Problem

  • Hélène Barucq
  • Henri Calandra
  • Julien Diaz
  • Elvira ShisheninaEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


Methods based on Discontinuous Finite Element approximation (DG FEM) are basically well-adapted to specifics of wave propagation problems in complex media, due to their numerical accuracy and flexibility. However, they still lack of computational efficiency, by reason of the high number of degrees of freedom required for simulations.

The Trefftz-DG solution methodology investigated in this work is based on a formulation which is set only at the boundaries of the mesh. It is a consequence of the choice of test functions that are local solutions of the problem. It owns the important feature of involving a space-time approximation which requires using elements defined in the space-time domain.

Herein, we address the Trefftz-DG solution of the Elastodynamic System. We establish its well-posedness which is based on mesh-dependent norms. It is worth noting that we employ basis functions which are space-time polynomial. Some numerical experiments illustrate the proper functioning of the method.



This work is supported by the Inria—Total S.A. strategic action “Depth Imaging Partnership” (


  1. 1.
    E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, in Proceedings of the 2nd International Congress of Applied Mechanics, Zurich (1926), pp. 131–137Google Scholar
  2. 2.
    J. Jirousek, Basis for development of large finite elements locally satisfying all field equations. Comput. Methods Appl. Mech. Eng. 14(1), 65–92 (1978)CrossRefGoogle Scholar
  3. 3.
    O.C. Zienkiewic, Trefftz type approximation and the generalized finite element method - history and development. Comput. Assist. Mech. Eng. Sci. 4, 305–316 (1997)Google Scholar
  4. 4.
    C. Farhat, I. Harari, U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192(11), 1389–1419 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Tezaur, C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Methods Eng. 66(5), 796–815 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225(2), 1961–1984 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Z. Badics, Trefftz-discontinuous Galerkin and finite element multi-solver technique for modeling time-harmonic EM problems with high-conductivity regions. IEEE Trans. Magn. 50(2), 401–404 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49(1), 264–284 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Moiola, R. Hiptmair, I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62(5), 809–837 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Hiptmair, A. Moiola, I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82(281), 247–268 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Petersen, C. Farhat, R. Tezaur, A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain. Int. J. Numer. Methods Eng. 78(3), 275–295 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Kretzschmar, S.M. Schnepp, I. Tsukerman, T. Weiland, Discontinuous Galerkin methods with Trefftz approximations. J. Comput. Appl. Math. 270, 211–222 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Egger, F. Kretzschmar, S.M. Schnepp, T. Weiland, A space-time discontinuous Galerkin Trefftz method for time dependent Maxwell’s equations. SIAM J. Sci. Comput. 37(5), B689–B711 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Kretzschmar, A. Moiola, I. Perugia, S. Schnepp, A priori error analysis of space–time Trefftz discontinuous Galerkin methods for wave problems. IMA J. Numer. Anal. 36(4), 1599–1635 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Wang, R. Tezaur, C. Farhat, A hybrid discontinuous in space and time Galerkin method for wave propagation problems. Int. J. Numer. Methods Eng. 99(4), 263–289 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Banjai, E. Georgoulis, O. Lijoka, A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation. SIAM J. Numer. Anal. 55(1), 63–86 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Moiola, I. Perugia, A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138(2), 389–435 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Le Tallec, Modélisation et calcul des milieux continus (Editions Ecole Polytechnique, Palaiseau, 2009)Google Scholar
  19. 19.
    J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer Science & Business Media, Berlin, 2007)zbMATHGoogle Scholar
  20. 20.
    H. Barucq, H. Calandra, J. Diaz, E. Shishenina, Space-time Trefftz - discontinuous Galerkin approximation for elasto-acoustics. Inria Bordeaux Sud-Ouest, LMAP CNRS, Total EP, RR-9104 (2017)Google Scholar
  21. 21.
    A. Maciag, J. Wauer, Solution of the two-dimensional wave equation by using wave polynomials. J. Eng. Math. 51(4), 339–350 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hélène Barucq
    • 1
  • Henri Calandra
    • 2
  • Julien Diaz
    • 1
  • Elvira Shishenina
    • 1
    • 2
    Email author
  1. 1.Magique-3DInria-UPPA E2S-CNRSPauFrance
  2. 2.Total S.A.HoustonUSA

Personalised recommendations