Modelling and Dynamic Analysis of Safety Behaviour

  • Hafida Bouloiz
  • Emmanuel GarbolinoEmail author
Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)


This chapter presents a dynamic analysis of the safety behaviour of operators and the organizational environment in which they work. This environment contains a set of factors (variables) that affect human behaviour in the context of industrial safety. These behavioural factors are identified from an initial analysis of the principal factors that influence how operators behave safely. The focus of this chapter is the explanatory factors that underlie safe behaviour and the causal relationships that link these factors, from a combined perspective of system dynamics and fuzzy logic. System dynamics is used to accurately define the causal interactions between this set of explanatory factors and represent them from a systemic and dynamic viewpoint. Fuzzy logic is subsequently used to take into account the qualitative and inexact nature of the variables involved. Taken together, system dynamics and fuzzy logic is used to develop a model that more accurately describes the safe behaviour of operators.


  1. Adams JS (1963) Inequity in social exchange. In: Berkowitz L (ed) Advances in experimental social psychology, vol 2. Academic, New York, p 267Google Scholar
  2. Allain H (1999) La fatigue: de la biologie à la pharmacologie. Rapport technique, Université de rennes 1Google Scholar
  3. Apter MJ (1982) The experience of motivation. Academic, London/New York, 378 pGoogle Scholar
  4. Autissier D, Bensebaa F (2009) Enquête: Impact de la crise financière sur la vie en entreprise. Perception et Comportements des salariésGoogle Scholar
  5. Bandura A (1997) Self-efficacy: the exercise of control. Freeman, New York, pp 664, ISBN-10: 0716728508Google Scholar
  6. Bandura A (2002) Auto-efficacité. Le sentiment d’efficacité personnelle. Collection “Ouvertures psychologiques”, pp 880, ISBN 2744500984Google Scholar
  7. Belyavin A, Farmer E (2006) Modeling the workload and performance of psychomotor tasks. In: Proceedings of the conference on Behavior Representation in Modeling and Simulation (BRIMS), Baltimore, USAGoogle Scholar
  8. Bezdek JC, Sanker K (1992) Fuzzy models for pattern recognition. PAL, IEEE Press, New YorkGoogle Scholar
  9. Bonjour E, Dulmet M (2002) Articulation entre pilotage des systèmes de compétences et gestion des connaissances. 1er colloque de gestion des compétences et des connaissances en génie industriel, Nantes, 12–13 décembre, pp 43–50Google Scholar
  10. Boucher X, Burlat P (2003) Vers l’intégration des compétences dans le pilotage des performances de l’entreprise. JESA 37(3):363–390CrossRefGoogle Scholar
  11. Cesar M (2005) The process of organizational learning: to- open access OJSST wards new ways of learning and the Management of CompetencesGoogle Scholar
  12. Cornet A (1995) Enquête de climat social et de satisfaction au travail : un outil de gestion des ressources humaines. Rapport technique, 13e Université d’étéGoogle Scholar
  13. Denis-Remis C (2007) Approche de la maitrise des risques par la formation des acteurs. Thèse de doctorat. Ecole des Mines de ParisGoogle Scholar
  14. Dernoncourt F (2011) Introduction à la logique floue, pp 17Google Scholar
  15. Elkosantini S (2007) Contribution à la modélisation dynamique du comportement d’opérateurs humains. Thèse de doctorat. Université Blaise Pascal, pp 159Google Scholar
  16. Foucher R, Morin L (2007) Sentiment d’efficacité personnelle et apprentissage dans des dispositifs ouverts de formation : résultats de cinq recherches empiriquesGoogle Scholar
  17. Frere R (2000) Contribution à l’intégration d’aspects humains dans la modélisation des systèmes de fabrication : vers une gestion conjointe des ressources humaines et de la production. Thèse de doctorat, Université de Valenciennes et du Hainaut-Cambrésis, Valenciennes, FranceGoogle Scholar
  18. Gallo A (1999) Les animaux, psychologie et comportement, pp 63Google Scholar
  19. Gemelli AP (1955) Le Facteur Humain: Des Accidents du Travail dans l’Industrie. 649–660 pGoogle Scholar
  20. Giambiasi N, Frydman C, Seck M (2005) Modélisation et simulation du comportement humain avec le formalisme devs. In: Actes de 6ème Conférence Francophone de Modélisation et Simulation (MOSIM’06), MarocGoogle Scholar
  21. Hackman JR, Oldham GR (1976) Motivation through the design of work: test of a theory. Organ Behav Hum Perform 16(2):250–279CrossRefGoogle Scholar
  22. Hart P, Cooper C (2001) Occupational stress: toward a more integrated framework. In: Handbook of industrial work and organizational psychology, vol 2. Sage, Thousand OaksGoogle Scholar
  23. Harvey S, Courcy F, Petit A, Hudon J, Teed M, Loiselle O, Morin A (2006) Interventions organisationnelles et santé psychologique au travail: une synthèse des approaches au niveau international. Rapport, IRSSTGoogle Scholar
  24. Harzallah M, Vernadat F (2002) It-based competency modeling and management: from theory to practice in enterprise engineering and operations. Comput Ind 48(2):157–179. CrossRefGoogle Scholar
  25. Herzberg F, Voraz C (1959) Le Travail et la Nature de l’homme, Entreprise moderne d’édition, ParisGoogle Scholar
  26. Howard PJ (2006) The owner’s manual for the brain: everyday applications from mind-brain research, 3rd edn. Bard Press, Austin, p 104Google Scholar
  27. Jimenez M (1997) La psychologie de la perception. Flammarion, pp 125, ISBN 2-08-035496Google Scholar
  28. Jones C (2005) Behavioral theory in simulation: ambiguous results from simple relationships. In: Proceedings the 23rd international conference of the System Dynamics Society, USAGoogle Scholar
  29. Karsky M, Adamo M (1977) Application de la Dynamique des Systèmes et de la Logique Floue à la Modélisation d’un Problème de Postes en Raffinerie. Actes du Congrès de l‘AFCET. Edition Hommes et Techniques. Tome 2, pp 479Google Scholar
  30. Karsky M, Donnadieu G (1990) The dynamic of behavior and motivation. In: Proceeding of the international system conference, BostonGoogle Scholar
  31. Le Boterf (2004) Construire les compétences individuelles et collectives: La compétence n’est plus ce qu’elle étaitGoogle Scholar
  32. Leveson N (2004) Model-based analysis of socio-technical risk, Massachusetts institute of technology, Engineering systems division, working paper series, ESDWP- 2004-08, December 2004Google Scholar
  33. Marchand A, Demers A, Durand P (2005) Does work really cause distress? The contribution of occupational structure and work organization to the experience of psychological distress. Soc Sci Med 60:1–14CrossRefGoogle Scholar
  34. Maslow AH (1954) A theory of human motivation. Psychol Rev 50:370–396CrossRefGoogle Scholar
  35. McClelland DC (1961) The achieving society. Van Nostrand, PrincetonCrossRefGoogle Scholar
  36. McCrae R, John O (1992) An introduction to the five-factor model and its applications. J Pers 60:175–215CrossRefGoogle Scholar
  37. Novák V, Perfilieva I (1999) Evaluating linguistic expressions and functional fuzzy theories in fuzzy logic. In: Computing with words in information/intelligent systems 1, vol 33. Physica-Verlag HD, Heidelberg, pp 383–406CrossRefGoogle Scholar
  38. Scherrer S (1967) Physiologie Du TravailGoogle Scholar
  39. Siebers P, Baines T, Mason S, Ladbrook J (2004) Modeling human variation in assembly line models. In: Proceedings of the 2004 operational research Society Simulation Workshop (SW04), UKGoogle Scholar
  40. Simard M, Marchand A (1997) L’adaptation des superviseurs à la gestion participative de la prévention des accidents. Rel Indust 50(3):567–586. CrossRefGoogle Scholar
  41. Vallerand RJ, Thill EE (1993) Introduction au concept de motivation, chapitre Introduction à la psychologie de la motivation, pp 3–39Google Scholar
  42. Vroom V (1964) Work and motivation. Wiley, New York, p 331Google Scholar
  43. Watson JB (1994) Psychology as the behaviorist views it. First published in Psychological Review (1913), 20:158–177CrossRefGoogle Scholar
  44. Zachary W, Santarelli T, Ryder J, Stokes J, Scolaro D (2001) Developing a multi-tasking cognitive agent using the cognet/igen integrative architecture. In: Proceeding of 10th conference on computer generated forces and behavior representation, NorfolkGoogle Scholar
  45. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353CrossRefGoogle Scholar
  46. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199–249MathSciNetCrossRefGoogle Scholar
  47. Zadeh LA (1978) Fuzzy sets as a basis for theory of possibility. Int J Fuzzy Sets Syst 1:3–28 978MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ecole Nationale des Sciences AppliquéesAgadirMorocco
  2. 2.MINES ParisTech/PSL Research University, CRCSophia Antipolis CedexFrance

Personalised recommendations