Optical Manipulation of Otoliths In-Vivo

  • Itia Amandine Favre-BulleEmail author
Part of the Springer Theses book series (Springer Theses)


Despite the light scattering that occurs in biological tissues, in-vivo optical trapping is possible, and has been demonstrated for targets such as red blood cells [1] and nanoparticles [2]. Those studies show that OT can trap and manipulate small objects in free flowing channels in relatively shallow tissue (50 \(\upmu \)m) without any correction to the incoming beam.


  1. 1.
    M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li, Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4, 1768 (2013)CrossRefGoogle Scholar
  2. 2.
    P.L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, G. Koster, Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat. Commun. 7 (2016)Google Scholar
  3. 3.
    D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J.E. Curtis, B.A. Koss, D.G. Grier, Dynamic holographic optical tweezers. Opt. Commun. 207(1–6), 169 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, J. Leach, Independent polarisation control of multiple optical traps. Opt. Express 16(20), 15897 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    K. Visscher, G.J. Brakenhoff, J.J. Krol, Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14(2), 105 (1993)CrossRefGoogle Scholar
  7. 7.
    C. Bustamante, Y.R. Chemla, J.R. Moffitt, High-resolution dual-trap optical tweezers with differential detection: instrument design. Cold Spring Harbor Protoc. 2009(10), pdb.ip73 (2009)Google Scholar
  8. 8.
    S. Rancourt-Grenier, M.T. Wei, J.J. Bai, A. Chiou, P.P. Bareil, P.L. Duval, Y. Sheng, Dynamic deformation of red blood cell in dual-trap optical tweezers. Opt. Express 18(10), 10462 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    W. Mo, F. Chen, A. Nechiporuk, T. Nicolson, Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci. 11(1), 1 (2010)CrossRefGoogle Scholar
  10. 10.
    A.H. Groneberg, U. Herget, S. Ryu, R.J. De Marco, Positive taxis and sustained responsiveness to water motions in larval zebrafish. Front. Neural Circ. 9, 9 (2015)Google Scholar
  11. 11.
    I.H. Bianco, L.H. Ma, D. Schoppik, D.N. Robson, M.B. Orger, J.C. Beck, J.M. Li, A.F. Schier, F. Engert, R. Baker, The tangential nucleus controls a gravito-inertial vestibulo-ocular reflex. Curr. Biol. 22(14), 1285 (2012)CrossRefGoogle Scholar
  12. 12.
    K.D. Wulff, D.G. Cole, R.L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, M.J. Padgett, Aberration correction in holographic optical tweezers. Opt. Express 14(9), 4169 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    H.I.C. Dalgarno, T. Cizmar, T. Vettenburg, J. Nylk, F.J. Gunn-Moore, K. Dholakia, Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. 100(19), 191108 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Nixon, O. Katz, E. Small, Y. Bromberg, A.A. Friesem, Y. Silberberg, N. Davidson, Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photonics 7(11), 919 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    T.R. Thiele, J.C. Donovan, H. Baier, Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83(3), 679 (2014)CrossRefGoogle Scholar
  16. 16.
    F.O. Fahrbach, F.F. Voigt, B. Schmid, F. Helmchen, J. Huisken, Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21(18), 21010 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    O. Randlett, C.L. Wee, E.A. Naumann, O. Nnaemeka, D. Schoppik, J.E. Fitzgerald, R. Portugues, A.M.B. Lacoste, C. Riegler, F. Engert, A.F. Schier, Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12(11), 1039 (2015)CrossRefGoogle Scholar
  18. 18.
    V. Malafoglia, M. Colasanti, W. Raffaeli, D. Balciunas, A. Giordano, G. Bellipanni, Extreme thermal noxious stimuli induce pain responses in zebrafish larvae. J. Cell. Physiol. 229(3), 300 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Haesemeyer, D.N. Robson, J.M. Li, A.F. Schier, F. Engert, The structure and timescales of heat perception in larval zebrafish. Cell Syst. 1(5), 338 (2015)CrossRefGoogle Scholar
  20. 20.
    S.L. Smith, M. Hausser, Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13(9), 1144 (2010)CrossRefGoogle Scholar
  21. 21.
    K.D. Harris, R.Q. Quiroga, J. Freeman, S.L. Smith, Improving data quality in neuronal population recordings. Nat. Neurosci. 19(9), 1165 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Kaifosh, J.D. Zaremba, N.B. Danielson, A. Losonczy, SIMA: Python software for analysis of dynamic fluorescence imaging data. Frontiers Neuroinformatics 8, 80 (2014)CrossRefGoogle Scholar
  23. 23.
    E.A. Mukamel, A. Nimmerjahn, M.J. Schnitzer, Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63(6), 747 (2009)CrossRefGoogle Scholar
  24. 24.
    E.A. Pnevmatikakis, D. Soudry, Y. Gao, T.A. Machado, J. Merel, D. Pfau, T. Reardon, Y. Mu, C. Lacefield, W. Yang, M. Ahrens, R. Bruno, T.M. Jessell, D.S. Peterka, R. Yuste, L. Paninski, Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89(2), 285 (2016)CrossRefGoogle Scholar
  25. 25.
    G.E. Meredith, A.B. Butler, Organization of eighth nerve afferent projections from individual endorgans of the inner ear in the teleost, astronotus ocellatus. J. Comp. Neurol. 220(1), 44 (1983)CrossRefGoogle Scholar
  26. 26.
    C.A. McCormick, The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J. Morphol. 171(2), 159 (1982)CrossRefGoogle Scholar
  27. 27.
    W. Plassmann, Sensory modality interdependence in the octaval system of an elasmobranch. Exp. Brain Res. 50(2–3), 283 (1983)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations