Advertisement

Optical Systems to Decode Brain Activity

  • Itia Amandine Favre-Bulle
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Different methods have been developed over the past decades for studies of brain function. These methods aim to decode brain activity in terms of the communication that takes place among neurons, and to identify the patterns of neural activity that ultimately produce behaviour.

References

  1. 1.
    D. Regan, Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine (Elsevier, 1989)Google Scholar
  2. 2.
    A. Puce, D. Perrett, Electrophysiology and brain imaging of biological motion. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 358(1431), 435 (2003)CrossRefGoogle Scholar
  3. 3.
    D. Noble, The surprising heart: a review of recent progress in cardiac electrophysiology. J. Physiol. 353, 1 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    G. Burnstock, M.E. Holman, C.L. Prosser, Electrophysiology of smooth muscle. Physiol. Rev. 43(3), 482 (1963)CrossRefGoogle Scholar
  5. 5.
    M.W. Berns, Partial cell irradiation with a tunable organic dye laser. Nature 240(5382), 483 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    J. Sulston, J. White, Regulation and cell autonomy during postembryonic development of caenorhabditis elegans. Dev. Biol. 78(2), 577 (1980)CrossRefGoogle Scholar
  7. 7.
    O. Yizhar, L.E. Fenno, T.J. Davidson, M. Mogri, K. Deisseroth, Optogenetics in neural systems. Neuron 71(1), 9 (2011)Google Scholar
  8. 8.
    K. Deisseroth, Optogenetics. Nat. Methods 8(1), 26 (2011)CrossRefGoogle Scholar
  9. 9.
    G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. 100(24), 13940 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    F. Zhang, L.-P. Wang, E.S. Boyden, K. Deisseroth, Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3(10), 785 (2006)CrossRefGoogle Scholar
  11. 11.
    A.B. Arrenberg, F. Del Bene, H. Baier, Optical control of zebrafish behavior with halorhodopsin. Proc. Natl. Acad. Sci. 106(42), 17968 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    B. Schobert, J.K. Lanyi, Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257(17), 10306 (1982)Google Scholar
  13. 13.
    S.A. Hires, L. Tian, L.L. Looger, Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 36(1), 69 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y.-F. Chang, M. Nakano, A.S. Abdelfattah, M. Fujiwara, T. Ishihara, T. Nagai, R.E. Campbell, An expanded palette of genetically encoded ca2+ indicators. Science 333(6051), 1888 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    T.-W. Chen, T.J. Wardill, Y. Sun, S.R. Pulver, S.L. Renninger, A. Baohan, E.R. Schreiter, R.A. Kerr, M.B. Orger, V. Jayaraman, L.L. Looger, K. Svoboda, D.S. Kim, Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458), 295 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    H. Lutcke, M. Murayama, T. Hahn, D. Margolis, S. Astori, S. Meyer, W. Gobel, Y. Yang, W. Tang, S. Kugler, R. Sprengel, T. Nagai, A. Miyawaki, M. Larkum, F. Helmchen, M. Hasan, Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4(9) (2010)Google Scholar
  17. 17.
    L. Tian, S.A. Hires, T. Mao, D. Huber, M.E. Chiappe, S.H. Chalasani, L. Petreanu, J. Akerboom, S.A. McKinney, E.R. Schreiter, C.I. Bargmann, V. Jayaraman, K. Svoboda, L.L. Looger, Imaging neural activity in worms, flies and mice with improved gcamp calcium indicators. Nat. Methods 6(12), 875 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Gobel, F. Helmchen, In vivo calcium imaging of neural network function. Physiology 22(6), 358 (2007)CrossRefGoogle Scholar
  19. 19.
    T. Bozza, J.P. McGann, P. Mombaerts, M. Wachowiak, In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42(1), 9 (2004)CrossRefGoogle Scholar
  20. 20.
    H.I.C. Dalgarno, T. Cizmar, T. Vettenburg, J. Nylk, F.J. Gunn-Moore, K. Dholakia, Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. 100(19), 191108 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Nixon, O. Katz, E. Small, Y. Bromberg, A.A. Friesem, Y. Silberberg, N. Davidson, Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photonics 7(11), 919 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    R. Bowman, A. Wright, M. Padgett, An slm-based shack-hartmann wavefront sensor for aberration correction in optical tweezers. J. Optics 12(12), 124004 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    T. Cizmar, M. Mazilu, K. Dholakia, In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4(6), 388 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    B.A. Flusberg, E.D. Cocker, W. Piyawattanametha, J.C. Jung, E.L.M. Cheung, M.J. Schnitzer, Fiber-optic fluorescence imaging. Nat. methods 2(12), 941 (2005)CrossRefGoogle Scholar
  25. 25.
    D. Miyamoto, M. Murayama, The fiber-optic imaging and manipulation of neural activity during animal behavior. Neurosci. Res. 103, 1 (2016)CrossRefGoogle Scholar
  26. 26.
    S.C. Johnson, Optogenetics: an illuminating journey into the brain. Opt. Photon. News 22(7), 26 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Ploschner, T. Tyc, T. Cizmar, Seeing through chaos in multimode fibres. Nat. Photonics 9(8), 529 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    T. Cizmar, K. Dholakia, Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E.H.K. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    J. Huisken, D.Y.R. Stainier, Selective plane illumination microscopy techniques in developmental biology. Dev. (Cambridge, England) 136(12), 1963 (2009)Google Scholar
  31. 31.
    R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V.M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, K. Deisseroth, Sped light sheet microscopy: fast mapping of biological system structure and function. Cell 163(7), 1796 (2015)CrossRefGoogle Scholar
  32. 32.
    K. Greger, J. Swoger, E.H. Stelzer, Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instrum. 78(2), 023705 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    A.H. Voie, D.H. Burns, F.A. Spelman, Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170(Pt 3), 229 (1993)CrossRefGoogle Scholar
  34. 34.
    J. Buytaert, E. Descamps, D. Adrianens, J. Dirckx, Orthogonal-Plane Fluorescence Optical Sectioning: A Technique for 3-D Imaging of Biomedical Specimens (Formatex Research Center, 2010)Google Scholar
  35. 35.
    T. Vettenburg, H.I.C. Dalgarno, J. Nylk, C. Coll-Llado, D.E.K. Ferrier, T. Cizmar, F.J. Gunn-Moore, K. Dholakia, Light-sheet microscopy using an airy beam. Nat. Methods 11(5), 541 (2014)CrossRefGoogle Scholar
  36. 36.
    E.H.K. Stelzer, Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12(1), 23 (2015)CrossRefGoogle Scholar
  37. 37.
    F.O. Fahrbach, F.F. Voigt, B. Schmid, F. Helmchen, J. Huisken, Rapid 3d light-sheet microscopy with a tunable lens. Optics Express 21(18), 21010 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    M.B. Bouchard, V. Voleti, C.S. Mendes, C. Lacefield, W.B. Grueber, R.S. Mann, R.M. Bruno, E.M.C. Hillman, Swept confocally-aligned planar excitation (scape) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9(2), 113 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M. Weber, J. Huisken, Light sheet microscopy for real-time developmental biology. Curr. Opin. Genet. Dev. 21(5), 566 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Quirin, J. Jackson, D.S. Peterka, R. Yuste, Simultaneous imaging of neural activity in three dimensions. Front. Neural Circuits 8, 29 (2014)CrossRefGoogle Scholar
  41. 41.
    C. Lutz, T.S. Otis, V. DeSars, S. Charpak, D.A. DiGregorio, V. Emiliani, Holographic photolysis of caged neurotransmitters. Nat. Methods 5(9), 821 (2008)CrossRefGoogle Scholar
  42. 42.
    Y. Takiguchi, T. Otsu, T. Inoue, H. Toyoda, Self-distortion compensation of spatial light modulator under temperature-varying conditions. Optics Express 22(13), 16087 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    R. Heintzmann, Correcting distorted optics: back to the basics. Nat. Methods 7(2), 108 (2010)CrossRefGoogle Scholar
  44. 44.
    E. Papagiakoumou, V. de Sars, D. Oron, V. Emiliani, Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Optics Express 16(26), 22039 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    A. Badura, X.R. Sun, A. Giovannucci, L.A. Lynch, S.S.H. Wang, Fast calcium sensor proteins for monitoring neural activity. Neurophotonics 1(2), 025008 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Mertz, Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8(10), 811 (2011)CrossRefGoogle Scholar
  47. 47.
    R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik (Jena) 35, 237–246 (1972)Google Scholar
  48. 48.
    F. Del Bene, C. Wyart, Optogenetics: a new enlightenment age for zebrafish neurobiology. Dev. Neurobiol. 72(3), 404 (2012)CrossRefGoogle Scholar
  49. 49.
    R. Portugues, K.E. Severi, C. Wyart, M.B. Ahrens, Optogenetics in a transparent animal: circuit function in the larval zebrafish. Curr. Opinion Neurobiol. 23(1), 119 (2013)CrossRefGoogle Scholar
  50. 50.
    L.M. Nevin, E. Robles, H. Baier, E.K. Scott, Focusing on optic tectum circuitry through the lens of genetics. BMC Biol. 8(1), 126 (2010)CrossRefGoogle Scholar
  51. 51.
    P. Sajovic, C. Levinthal, Visual cells of zebrafish optic tectum: mapping with small spots. Neuroscience 7(10), 2407 (1982)CrossRefGoogle Scholar
  52. 52.
    M. Leslie, How the optic tectum stacks up. J. Cell Biol. 211(4), 719 (2015)CrossRefGoogle Scholar
  53. 53.
    M.A. Meredith, B.E. Stein, Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 56(3), 640 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations