Light Scattering in Brain Tissue Using Monte Carlo Method

  • Itia Amandine Favre-BulleEmail author
Part of the Springer Theses book series (Springer Theses)


As discussed in the Introduction, optogenetics uses light to drive or visualise neural activity. Being able to quantify and predict how light is scattered is crucial for optogenetics since light delivered to the neuron will determine the activity of neurons. Any superfluous light, delivered to the neurons that were not meant to be there for the particular study, will lead to erroneous results.


  1. 1.
    I.A. Favre-Bulle, D. Preece, T.A. Nieminen, L.A. Heap, E.K. Scott, H. Rubinsztein-Dunlop, Scattering of sculpted light in intact brain tissue, with implications for optogenetics. Sci. Rep. 5, 11501 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, T.M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37(16), 3586 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    A. Dunn, R. Richards-Kortum, Three-dimensional computation of light scattering from cells. IEEE J. Sel. Top. Quantum Electron. 2(4), 898 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Patterson, B.C. Wilson, D.R. Wyman, The propagation of optical radiation in tissue I. Models of radiation transport and their application. Lasers Med. Sci. 6(2), 155 (1991)CrossRefGoogle Scholar
  5. 5.
    S.T. Flock, M.S. Patterson, B.C. Wilson, D.R. Wyman, Monte carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng. 36(12), 1162 (1989)CrossRefGoogle Scholar
  6. 6.
    J. Kapuscinski, Dapi: a DNA-specific fluorescent probe. Biotech. Histochem. 70(5), 220 (1995)CrossRefGoogle Scholar
  7. 7.
    R. Barer, Refractometry and interferometry of living cells. J. Opt. Soc. Am. 47(6), 545 (1957)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Sandell, T.C. Zhu, A review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics 4(11–12), 773 (2011)CrossRefGoogle Scholar
  9. 9.
    B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P.J. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13(23), 9361 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small ParticlesGoogle Scholar
  11. 11.
    H.C. Van de Hulst, Light scattering by small particles. Q. J. Royal Meteorol. Soc. 84(360), 198 (1958)Google Scholar
  12. 12.
    L. Lorenz, Lysbevaegelsen i og uden for en af plane lysbolger belyst kugle. Vidensk. Selsk. Skr. 6, 2 (1890)Google Scholar
  13. 13.
    G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann Phys. 330(3), 377 (1908)CrossRefGoogle Scholar
  14. 14.
    T. Nieminen, H. Rubinsztein-Dunlop, N.R. Heckenberg, Multipole expansion of strongly focussed laser beams. J. Quant. Spectro. Radiat. Transf. 79–80, 1005 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations