Shrinking Cities and Ecosystem Services: Opportunities, Planning, Challenges, and Risks

  • Dagmar HaaseEmail author
  • Annegret Haase
  • Dieter Rink
  • Justus Quanz


Which ecosystem services are addressed? Air filtration, air cooling, physical and mental recreation, food production, flood regulation.


Urban shrinkage Land cover change Urban ecosystem services Green spaces Heat regulation Synergies Trade-offs Planning instruments 


  1. 1.
    Haase D, Haase A, Rink D. Conceptualising the nexus between urban shrinkage and ecosystem services. Landsc Urban Plan. 2014;132:159–69.CrossRefGoogle Scholar
  2. 2.
    Breuste J, Haase D, Elmquist T. Urban landscapes and ecosystem services. In: Sandhu H, Wratten S, Cullen R, Costanza R, editors. Ecosystem services in agricultural and urban landscapes. Australia: John Wiley & Sons; 2013. p. 83–104.CrossRefGoogle Scholar
  3. 3.
    Weber N, Haase D, Franck U. Assessing traffic-induced noise and air pollution in urban structures using the concept of landscape metrics. Landsc Urban Plan. 2014;125:105–16.CrossRefGoogle Scholar
  4. 4.
    Kabisch N, Haase D, Annerstedt van den Bosch M. Adding natural spaces to social indicators of intra-urban health inequalities among children – a case study from Berlin, Germany. Int J Environ Res Public Health. 2016;13:783. Scholar
  5. 5.
    Larondelle N, Frantzeskaki N, Haase D. Mapping transition potential with stakeholder and policy-driven scenarios in Rotterdam City. Ecol Indic. 2016;70:630–43.CrossRefGoogle Scholar
  6. 6.
    Strohbach MW, Haase D. Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landsc Urban Plan. 2012;104:95–104.CrossRefGoogle Scholar
  7. 7.
    Haase D, Nuissl H. Does urban sprawl drive changes in the water balance and policy? The case of Leipzig (Germany) 1870–2003. Landsc Urban Plan. 2007;80:1–13.CrossRefGoogle Scholar
  8. 8.
    Henninger S. Stadtökologie. Bausteine des Ökosystems Stadt. Schöningh: UTB; 2011.Google Scholar
  9. 9.
    Ferrante A, Mihalakakou G. The influence of water, green and selected passive techniques on the rehabilitation of historical industrial buildings in urban areas. Sol Energy. 2001;70(3):245–53.CrossRefGoogle Scholar
  10. 10.
    Strohbach M, Haase D, Kabisch N. Birds and the city – urban biodiversity, land-use and socioeconomics. Ecol Soc. 2009;14(2):31.CrossRefGoogle Scholar
  11. 11.
    Gruehn D, Budinger A, Baumgarten H. Bedeutung des Stadtgrüns für den Wert von Grundstücken und Immobilien (The importance of urban green on the real estate market). Stadt und Grün. 2012;61(1):9–13.Google Scholar
  12. 12.
    Gómez-Baggethum E, Ruiz-Perez M. Economic valuation and the commodification of ecosystem services. Prog Phys Geogr. 2011;35(5):613–28.CrossRefGoogle Scholar
  13. 13.
    Köhler M, Clements AM. Green roofs, ecological functions. In: Meyers RA, editor. Encyclopedia of sustainability science and technology. New York: Springer; 2013. p. 4730–54.Google Scholar
  14. 14.
    Li J-F, Wai OWH, Li YS, Zhan J-M, Ho YA, Li J, Lam E. Effect of green roof on ambient CO2 concentration. Build Environ. 2010;45:2644–51.CrossRefGoogle Scholar
  15. 15.
    Schwarz N, Bauer A, Haase D. Assessing climate impacts of local and regional planning policies – quantification of impacts for Leipzig (Germany). Environ Impact Assess Rev. 2011;31:97–111.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Dagmar Haase
    • 1
    • 2
    Email author
  • Annegret Haase
    • 3
  • Dieter Rink
    • 3
  • Justus Quanz
    • 4
  1. 1.Department of GeographyHumboldt Universität zu BerlinBerlinGermany
  2. 2.Department of Computational Landscape EcologyHelmholtz Centre for Environmental ResearchLeipzigGermany
  3. 3.Department of Urban and Environmental SociologyHelmholtz Centre for Environmental Research–UFZLeipzigGermany
  4. 4.Institute of EcologyTechnische Universität BerlinBerlinGermany

Personalised recommendations