Advertisement

Climate Change Induced Carbon Competition: Bioenergy Versus Soil Organic Matter Reproduction

  • Uwe FrankoEmail author
  • Felix Witing
  • Martin Volk
Chapter

Abstract

Ecosystems regulate the global climate by storing and emitting greenhouse gases.

Keywords

Climate change Soil organic matter reproduction Carbon competition Bioenergy crop production Carbon demand index Capacity index Bioenergy production units 

Abbreviations

AA

Agricultural area within a BPU

BAT

Biologic active time

BPU

Biomass providing unit

C

Carbon

CANDY

Carbon and nitrogen dynamics model

CAP

Capacity index

CCB

Candy carbon balance model

CDI

Carbon demand index

Crep

Carbon reproduction flux

IC

Installed capacity

OM

Organic matter

SOM

Soil organic matter

References

  1. 1.
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.CrossRefGoogle Scholar
  2. 2.
    Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles. 1994;8:279–93.CrossRefGoogle Scholar
  3. 3.
    Franko U, Witing F, Jäckel G, Volk M. Large-scale identification of hot spots for soil carbon demand under climate change and bioenergy production. J Plant Nutr Soil Sci. 2015;178(2):199–208.CrossRefGoogle Scholar
  4. 4.
    Franko U, Oelschlägel B. Einfluß von Klima und Textur auf die biologische Aktivität beim Umsatz der organischen Bodensubstanz. Arch Acker-Pflanzenbau Bodenkd. 1995;39:155–63.Google Scholar
  5. 5.
    Franko U, Kolbe H, Thiel E, Ließ E. Multi-site validation of a soil organic matter model for arable fields based on generally available input data. Geoderma. 2011;166:119–34.CrossRefGoogle Scholar
  6. 6.
    Das S, Eichhorn M, Hopffgarten MV, Lang E, Priess J, Thrän D. (2012): Spatial analysis of the potential of district heating from existing bioenergy installations in Germany. Proceedings of the 20th European Biomass Conference and Exhibition, Milan, Italy. doi:  https://doi.org/10.5071/20thEUBCE2012-1AO.3.4.
  7. 7.
    Walla C, Schneeberger W. The optimal size for biogas plants. Biomass Bioenergy. 2008;32:551–7.CrossRefGoogle Scholar
  8. 8.
    Volk M, Möller M, Wurbs D. A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy. 2010;27:997–1009.CrossRefGoogle Scholar
  9. 9.
    Olson KR, Al-Kaisi MM, Lal R, Lowery B. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Sci Soc Am J. 2014;78:348–60.CrossRefGoogle Scholar
  10. 10.
    Umweltbundesamt. CORINE Land Cover CLC 2006. 100 m version 12/2009. 2009. Available at: http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-clc2006-100-m-version-12-2009.
  11. 11.
    Keil M, Bock M, Esch T, Metz A, Nieland S, Pfitzner A. CORINE Land Cover Aktualisierung 2006 für Deutschland. Umweltbundesamt. 2011. https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4086_0.pdf. Accessed 27 Oct 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Soil System ScienceHelmholtz Centre for Environmental Research–UFZHalleGermany
  2. 2.Department of Computational Landscape EcologyHelmholtz Centre for Environmental Research–UFZLeipzigGermany

Personalised recommendations