Advertisement

Drivers of Risks for Biodiversity and Ecosystem Services: Biogas Plants Development in Germany

  • Martin DotzauerEmail author
  • Jaqueline Daniel-Gromke
  • Daniela Thrän
Chapter

Abstract

Biogas production can push risk factors for the provision of ecosystem services and show interdependencies comparable to live stock farming. Spatial distribution analysis were used to assessing regional emphases for risks to ecosystem services. Of special interest specific densities of livestock farming, biogas production and the share of maize within crop rotations on farmland at a district level were taken into account. Biogas plants and cow sheds act very similar in terms of the required feedstock and incurring residues and in doing so for arable land. So it is recommended, that biogas and livestock farming should be jointly considered with respect to their need for feedstocks and the local capacity for sustainable application of manure as well as digestate. This can be achieved by a joint calculation of nutrient balances for both production systems.

Keywords

Bioenergy Biogas Feedstock Energy crops Land requirements 

References

  1. 1.
    Scheftelowitz M, Daniel-Gromke J, Rensberg N, Denysenko V, Hillebrand K, Naumann K, et al. Stromerzeugung aus Biomasse (Vorhaben IIa Biomasse) Zwischenbericht Juni 2015. Leipzig: DBFZ; 2015.Google Scholar
  2. 2.
    Steinhäußer R, Siebert R, Steinführer A, Hellmich M. National and regional land-use conflicts in Germany from the perspective of stakeholders. Land Use Policy. 2015;49:183–94.CrossRefGoogle Scholar
  3. 3.
    Vogel E, Deumlich D, Kaupenjohann M. Bioenergy maize and soil erosion—risk assessment and erosion control concepts. Geoderma. 2016;261:80–92.CrossRefGoogle Scholar
  4. 4.
    Lin Z, Anar MJ, Zheng H. Hydrologic and water-quality impacts of agricultural land use changes incurred from bioenergy policies. J Hydrol. 2015;525:429–40.CrossRefGoogle Scholar
  5. 5.
    Woodbury PB, Kemanian AR, Jacobson M, Langholtz M. Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production. Biomass Bioenergy. 2017;114:132–42.  https://doi.org/10.1016/j.biombioe.2017.01.024.CrossRefGoogle Scholar
  6. 6.
    Popp J, Lakner Z, Harangi-Rákos M, Fári M. The effect of bioenergy expansion: food, energy, and environment. Renew Sustain Energ Rev. 2014;32:559–78.CrossRefGoogle Scholar
  7. 7.
    Wirtschaftsbereiche – Landwirtschaftliche Betriebe – Landwirtschaftliche Betriebe – Statistisches Bundesamt (Destatis). https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/LandwirtschaftlicheBetriebe/Tabellen/LandwirtschaftlicheBetriebeFlaechenHauptnutzungsarten.html. Accessed 16 Mar 2016.
  8. 8.
    FNR Anbaufläche für nachwachsende Rohstoffe 2014/2015. https://mediathek.fnr.de/anbauflache-fur-nachwachsende-rohstoffe.html
  9. 9.
    Reinhold G. Wie viel Biogas (ver)trägt die Region? Konflikte un Synergie zwischen Tierhaltung und Biogas. FNR/KTBL-Kongress vom 10. bis 11. 2013. http://www.tll.de/ainfo/pdf/biog0913.pdf. Accessed 12 Oct 2017.
  10. 10.
    Wirtschaftsbereiche – Feldfrüchte und Grünland – Spezielle Bodennutzung und Ernte – Statistisches Bundesamt (Destatis). https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/LandForstwirtschaftFischerei/FeldfruechteGruenland/Tabellen/AckerlandHauptfruchtgruppen.html. Accessed 16 Mar 2016.
  11. 11.
    Bundes-Bodenschutzgesetz vom 17. März 1998 (BGBl. I S. 502), das zuletzt durch Artikel 3 des Gesetzes vom 9. Dezember 2004 (BGBl. I S. 3214) geändert worden ist.Google Scholar
  12. 12.
    EU EUR-Lex – 31991L0676 - EN. In: Official Journal L 375, 31/12/1991 P. 0001-0008; Finnish special edition: Chapter 15 volume 10 P. 0192; Swedish special edition: Chapter 15 Volume 10 P. 0192. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31991L0676&from=en. Accessed 16 Mar 2016.
  13. 13.
    Tamminga S. Pollution due to nutrient losses and its control in European animal production. Livest Prod Sci. 2003;84:101–11.CrossRefGoogle Scholar
  14. 14.
    Gevers J, Høye TT, Topping CJ, Glemnitz M, Schröder B. Biodiversity and the mitigation of climate change through bioenergy: impacts of increased maize cultivation on farmland wildlife. GCB Bioenergy. 2011;3:472–82.CrossRefGoogle Scholar
  15. 15.
    Faulstich M, Holm-Müller K, Bradke H, Calliess C, Foth H, Niekisch M, Schreurs M. Stickstoff: Lösungsstrategien für ein drängendes Umweltproblem. Berlin: Sachverständigenrat für Umweltfragen; 2015.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Martin Dotzauer
    • 1
    Email author
  • Jaqueline Daniel-Gromke
    • 2
  • Daniela Thrän
    • 1
    • 3
  1. 1.Bioenergy SystemsDBFZ Deutsches Biomasseforschungszentrum gGmbHLeipzigGermany
  2. 2.Biochemical ConversionDBFZ Deutsches Biomasseforschungszentrum gGmbHLeipzigGermany
  3. 3.Bioenergy DepartmentHelmholtz Centre for Environmental Research–UFZLeipzigGermany

Personalised recommendations