Advertisement

Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems

  • Oliver SchweigerEmail author
  • Markus Franzén
  • Mark Frenzel
  • Paul Galpern
  • Jeremy Kerr
  • Alexandra Papanikolaou
  • Pierre Rasmont
Chapter

Abstract

Pollination of wild and crop plants by animal pollinators is a key ecosystem service that is important to human welfare. Across Europe, climatic conditions are the most important drivers of occurrence and richness of pollinators followed by land cover and soil conditions. However, the example of recent range shifts of important pollinators such as the bumblebees shows that northern range expansions can be limited while southern range contractions can be considerable, leading to severe consequences under future scenarios. The way we utilize our landscape is a likely reason for such strong effects since the response to changing temperature conditions strongly depends on the amount of semi-natural area available in a landscape. In particular, the number of bee species is less sensitive to increasing temperatures when the amount of semi-natural habitat is high, while species richness drastically declines in intensively used agricultural landscapes and even more so with increasing temperatures. Such interactive effects of major drivers of global change bear a big chance for enhancing resilience in pollinator communities and thus in food production systems, e.g. by increasing the amount of semi-natural habitat as is the goal of the EU strategy for Green Infrastructure and some of the regulations in the EU Common Agricultural Policy (CAP).

Keywords

Pollination Climate change Land-use change Resilience Mitigation 

References

  1. 1.
    Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321–6.CrossRefGoogle Scholar
  2. 2.
    Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc Roy Soc B Biol Sci. 2007;274(1608):303–13.CrossRefGoogle Scholar
  3. 3.
    Gallai N, Salles JM, Settele J, Vaissiere BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68(3):810–21.CrossRefGoogle Scholar
  4. 4.
    Eilers EJ, Kremen C, Greenleaf SS, Garber AK, Klein AM. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS One. 2011;6(6):e21363.CrossRefGoogle Scholar
  5. 5.
    Kearns CA, Inouye DW, Waser NM. Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst. 1998;29:83–112.CrossRefGoogle Scholar
  6. 6.
    Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 2013;339(6127):1608–11.CrossRefGoogle Scholar
  7. 7.
    Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006;313(5785):351–4.CrossRefGoogle Scholar
  8. 8.
    IPBES. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, et al., editors. 2016. https://www.actu-environnement.com/media/pdf/news-26331-synthese-ipbes-decideurs-pollinisateurs.pdf. Accessed 11 Oct 2017.
  9. 9.
    Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25(6):345–53.CrossRefGoogle Scholar
  10. 10.
    Gonzalez-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol. 2013;28(9):524–30.CrossRefGoogle Scholar
  11. 11.
    Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, et al. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev Camb Philos Soc. 2010;85(4):777–95.Google Scholar
  12. 12.
    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.CrossRefGoogle Scholar
  13. 13.
    IPCC. Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al., editors. Climate change 2014: impacts, adaptation, and vulnerability part A: global and sectoral aspects contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1–32.Google Scholar
  14. 14.
    Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333(6045):1024–6.CrossRefGoogle Scholar
  15. 15.
    Sunday JM, Bates AE, Dulvy NK. Thermal tolerance and the global redistribution of animals. Nat Clim Chang. 2012;2(9):686–90.CrossRefGoogle Scholar
  16. 16.
    Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, et al. Climate change impacts on bumblebees converge across continents. Science. 2015;349(6244):177–80.CrossRefGoogle Scholar
  17. 17.
    Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts S, Biesmeijer JC, et al. Climatic risk and distribution Atlas of European Bumblebees. BioRisk. 2015;10:1–236.CrossRefGoogle Scholar
  18. 18.
    Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, et al. Relocation risky for bumblebee colonies—response. Science. 2015;350(6258):287.CrossRefGoogle Scholar
  19. 19.
    Zacharias S, Bogena H, Samaniego L, Mauder M, Fuss R, Putz T, et al. A network of terrestrial environmental observatories in Germany. Vadose Zone J. 2011;10(3):955–73.CrossRefGoogle Scholar
  20. 20.
    Papanikolaou AD, Kühn I, Frenzel M, Schweiger O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J Appl Ecol. 2017;54(2):527–36.CrossRefGoogle Scholar
  21. 21.
    Council Regulation (EC). No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. Off J Eur Union. 2013;L347:608–70.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Oliver Schweiger
    • 1
    Email author
  • Markus Franzén
    • 2
  • Mark Frenzel
    • 1
  • Paul Galpern
    • 3
  • Jeremy Kerr
    • 4
  • Alexandra Papanikolaou
    • 1
  • Pierre Rasmont
    • 5
  1. 1.Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalleGermany
  2. 2.Department of Biology and Environmental Science, Ecology and Evolution in Microbial Model Systems, EEMISLinnaeus UniversityKalmarSweden
  3. 3.Faculty of Environmental DesignUniversity of CalgaryCalgaryCanada
  4. 4.Department of BiologyUniversity of OttawaOttawaCanada
  5. 5.Department of ZoologyUniversity of MonsMonsBelgium

Personalised recommendations