Advertisement

Vulnerability of Ecosystem Services in Farmland Depends on Landscape Management

  • Jacqueline LoosEmail author
  • Péter Batáry
  • Ingo Grass
  • Catrin Westphal
  • Svenja Bänsch
  • Aliette Bosem Baillod
  • Annika L. Hass
  • Julia Rosa
  • Teja Tscharntke
Chapter

Abstract

Forty-four percent of Europe’s terrestrial surface is covered with agricultural land. Thus, agriculture strongly influences Europe’s environment, including ecological functions and processes.

Keywords

Agricultural intensification Biodiversity Landscape heterogeneity Landscape complexity Landscape composition Landscape configuration Pollination Pest control Semi-natural habitat Spatial scale 

Notes

Acknowledgements

Aliette Bosem Baillod was supported by a scholarship from the German Academic Exchange Service (DAAD), Svenja Bänsch acknowledges her scholarship by the German Federal Environmental Foundation (DBU) and Péter Batáry was funded through the DFG (BA 4438/2-1) and by the Economic Development and Innovation Operational Programme of Hungary (GINOP-2.3.2-15-2016-00019). Aliette Bosem Baillod and Annika Hass were supported by the ERA-Net BiodivERsA project “FarmLand” funded by the BMBF (German Ministry of Research and Education, FKZ: 01LC1104A).

References

  1. 1.
    Plieninger T, Schleyer C, Schaich H, Ohnesorge B, Gerdes H, Hernández-Morcillo M, et al. Mainstreaming ecosystem services through reformed European agricultural policies. Conserv Lett. 2012;5(4):281–8.CrossRefGoogle Scholar
  2. 2.
    Plieninger T, Draux H, Fagerholm N, Bieling C, Bürgi M, Kizos T, et al. The driving forces of landscape change in Europe: a systematic review of the evidence. Land Use Policy. 2016;57:204–14.CrossRefGoogle Scholar
  3. 3.
    Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486(7401):59–67.CrossRefGoogle Scholar
  4. 4.
    Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 2013;339(6127):1608–11.CrossRefGoogle Scholar
  5. 5.
    Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun. 2015;6:7414.CrossRefGoogle Scholar
  6. 6.
    Jonsson M, Kaartinen R, Straub CS. Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci. 2017;20:1–6.CrossRefGoogle Scholar
  7. 7.
    Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ. 2016;221:198–204.CrossRefGoogle Scholar
  8. 8.
    Loos J, Turtureanu PD, von Wehrden H, Hanspach J, Dorresteijn I, Frink JP, et al. Plant diversity in a changing agricultural landscape mosaic in Southern Transylvania (Romania). Agric Ecosyst Environ. 2014;199(0):350–7.Google Scholar
  9. 9.
    Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett. 2011;14(2):101–12.CrossRefGoogle Scholar
  10. 10.
    Batáry P, Gallé R, Riesch F, Fischer C, Dormann CF, Mußhoff O, et al. The former iron curtain still drives biodiversity-profit trade-offs in German agriculture. Nat Ecol Evol. 2017;1:1279–84.CrossRefGoogle Scholar
  11. 11.
    Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett. 2013;16:584–99.CrossRefGoogle Scholar
  12. 12.
    Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett. 2011;14(9):922–32.CrossRefGoogle Scholar
  13. 13.
    Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, De Jong H, et al. Landscape simplification filters species traits and drives biotic homogenization. Nat Commun. 2015;6:8568.CrossRefGoogle Scholar
  14. 14.
    Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, et al. Landscape effects on crop pollination services: are there general patterns? Ecol Lett. 2008;11(5):499–515.CrossRefGoogle Scholar
  15. 15.
    Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Soc. 2006;273(1595):1715–27.CrossRefGoogle Scholar
  16. 16.
    Tscharntke T, Batáry P, Dormann CF. Set-aside management: how do succession, sowing patterns and landscape context affect biodiversity? Agric Ecosyst Environ. 2011;143(1):37–44.CrossRefGoogle Scholar
  17. 17.
    Bosem Baillod A, Tscharntke T, Clough Y, Batáry P. Landscape-scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J Appl Ecol. 2017;  https://doi.org/10.1111/1365-2664.12910.CrossRefGoogle Scholar
  18. 18.
    Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett. 2005;8(8):857–74.CrossRefGoogle Scholar
  19. 19.
    Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG, Biesmeijer JC, et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol Rev Camb Philos Soc. 2013;88(4):1002–21.CrossRefGoogle Scholar
  20. 20.
    Westphal C, Steffan-Dewenter I, Tscharntke T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett. 2003;6:961–5.CrossRefGoogle Scholar
  21. 21.
    Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L, Nowakowski M, et al. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc Roy Soc B Biol Sci. 2015;282(1816):1740.CrossRefGoogle Scholar
  22. 22.
    Batáry P, Báldi A, Kleijn D, Tscharntke T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc Roy Soc B Biol Sci. 2011;278(1713):1894–902.CrossRefGoogle Scholar
  23. 23.
    Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology. 2002;83(5):1421–32.CrossRefGoogle Scholar
  24. 24.
    Rand TA, Tscharntke T. Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos. 2007;116(8):1353–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jacqueline Loos
    • 1
    • 2
    Email author
  • Péter Batáry
    • 3
    • 4
  • Ingo Grass
    • 3
  • Catrin Westphal
    • 3
  • Svenja Bänsch
    • 3
  • Aliette Bosem Baillod
    • 3
    • 5
  • Annika L. Hass
    • 3
  • Julia Rosa
    • 3
  • Teja Tscharntke
    • 3
  1. 1.Agroecology, Department of Crop SciencesGeorg-August University of GöttingenGöttingenGermany
  2. 2.Institute of Ecology, Faculty of Sustainability ScienceLeuphana UniversityLüneburgGermany
  3. 3.Agroecology, Department of Crop SciencesUniversity of GöttingenGöttingenGermany
  4. 4.Landscape and Conservation Ecology Research GroupMTA Centre for Ecological ResearchTihanyHungary
  5. 5.Agricultural Landscapes and Biodiversity Group, Research Station Agroscope Reckenholz-Taenikon ARTZürichSwitzerland

Personalised recommendations