Using Dynamic Global Vegetation Models (DGVMs) for Projecting Ecosystem Services at Regional Scales

  • Alice BoitEmail author
  • Boris Sakschewski
  • Lena Boysen
  • Ana Cano-Crespo
  • Jan Clement
  • Nashieli Garcia Alaniz
  • Kasper Kok
  • Melanie Kolb
  • Fanny Langerwisch
  • Anja Rammig
  • René Sachse
  • Michiel van Eupen
  • Werner von Bloh
  • Delphine Clara Zemp
  • Kirsten Thonicke


Climate change and land-use change are two major drivers of vegetation change causing habitat and biodiversity loss and posing a threat to the sustained provisioning of ecosystem goods and services. Following-up on the Millennium Ecosystem Assessment, the Sustainable Development Goals have been a fresh stimulus to the current interest in ecosystem services. Dynamic Global Vegetation Models (DGVMs) offer the possibility of integrating large amounts of geospatial data to quantify and project a large range of ecological variables important for ecosystem service provisioning under future scenarios. We outline how such model output could be used for projecting ecosystem service provisioning.


Climate change Land-use change Ecosystem services Valuation 


  1. 1.
    Boit A, Sakschewski B, Boysen L, Cano-crespo A, Clement J, Garcia-Alaniz N, et al. Large-scale impact of climate change vs land-use change on future biome shifts in Latin America. Glob Chang Biol. 2016;22(11):3689–701.CrossRefGoogle Scholar
  2. 2.
    Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, et al. The next generation of scenarios for climate change research and assessment. Nature. 2010;463:747–56.CrossRefGoogle Scholar
  3. 3.
    Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol. 2003;9:161–85.CrossRefGoogle Scholar
  4. 4.
    Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Chang Biol. 2007;13:679–706.CrossRefGoogle Scholar
  5. 5.
    Yin L, Fu R, Shevliakova E, Dickinson R. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim Dyn. 2013;41:3127–43.CrossRefGoogle Scholar
  6. 6.
    Haines-Young R, Potschin M. The links between biodiversity, ecosystem services and human well-being. In: Raffaelli C, Frid C, editors. Ecosystem ecology: a new synthesis. Cambridge: Cambridge University Press; 2010.Google Scholar
  7. 7.
    Bennett EM, Peterson GD, Gordon LJ. Understanding relationships among multiple ecosystem services. Ecol Lett. 2009;12:1394–404.CrossRefGoogle Scholar
  8. 8.
    Mouchet MA, Lamarque P, Martín-López B, Crouzat E, Gos P, Byczek C, et al. An interdisciplinary methodological guide for quantifying associations between ecosystem services. Glob Environ Chang. 2014;28:298–308.CrossRefGoogle Scholar
  9. 9.
    Lamarque P, Lavorel S, Mouchet M, Quétier F. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc Natl Acad Sci U S A. 2014;111:13751–6.CrossRefGoogle Scholar
  10. 10.
    Prentice IC, Bondeau A, Cramer W, Harrison SP, Hickler T, Lucht W, et al. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Canadell JG, Pataki DE, Pitelka LF, editors. Terrestrial ecosystems in a changing world. Berlin: Springer; 2007. p. 175–92.CrossRefGoogle Scholar
  11. 11.
    Scheiter S, Langan L, Higgins SI. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 2013;198:957–69.CrossRefGoogle Scholar
  12. 12.
    Sakschewski B, von Bloh W, Boit A, Poorter L, Pena-Claros M, Heinke J, et al. Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Chang. 2016;6:1032–6.CrossRefGoogle Scholar
  13. 13.
    Oliver TH, Morecroft MD. 2014. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIREs Clim Change. 2014;5:317–35.CrossRefGoogle Scholar
  14. 14.
    Arneth A, Brown C, Rounsevell MDA. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat Clim Chang. 2014;4:550–7.CrossRefGoogle Scholar
  15. 15.
    Langerwisch F, Václavík T, von Bloh W, Vetter T, Thonicke K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems 2017 Environ. Res. Lett. 13 015003. Scholar
  16. 16.
    Tallis H, Mooney H, Andelman S, Balvanera P, Cramer W, Karp D, et al. A global system for monitoring ecosystem service change. Bioscience. 2012;62:977–86.CrossRefGoogle Scholar
  17. 17.
    Karp DS, Tallis H, Sachse R, Halpern B, Thonicke K, Cramer W, et al. National indicators for observing ecosystem service change. Glob Environ Chang. 2015;35:12–21.CrossRefGoogle Scholar
  18. 18.
    Balvanera P, Quijas S, Karp D, Ash N, Bennett E, Boumans R, et al. The GEO handbook on biodiversity observation networks. In: Walters M, Scholes RJ, editors. The GEO handbook on biodiversity observation networks. Berlin: Springer Berlin; 2017. p. 39–78.CrossRefGoogle Scholar
  19. 19.
    Bagstad KJ, Semmens DJ, Waage S, Winthrop R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv. 2013;5:27–39.CrossRefGoogle Scholar
  20. 20.
    Grima N, Singh SJ, Smetschka B, Ringhofer L. Payment for ecosystem services (PES) in Latin America: analysing the performance of 40 case studies. Ecosyst Serv. 2016;17:24–32.CrossRefGoogle Scholar
  21. 22.
    Pugh T, Arneth A, Olin S, Ahlström A, Bayer D, Goldewijk K, et al. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environ Res Lett. 2015;10:124008.CrossRefGoogle Scholar
  22. 23.
    Tian X, Sohngen B, Kim J, Ohrel S, Cole J. Global climate change impacts on forests and markets. Environ Res Lett. 2016;11:35011.CrossRefGoogle Scholar
  23. 24.
    Ukkola AM, Prentice IC. A worldwide analysis of trends in water-balance evapotranspiration. Hydrol Earth Syst Sci. 2013;17:4177–87.CrossRefGoogle Scholar
  24. 25.
    Mao J, Fu W, Shi X, Ricciuto D, Fisher J, Dickinson R, et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ Res Lett. 2015;10:094008.CrossRefGoogle Scholar
  25. 26.
    Fader M, Rost S, Müller C, Bondeau A, Gerten D. Virtual water content of temperate cereals and maize: present and potential future patterns. J Hydrol. 2010;384:218–31.CrossRefGoogle Scholar
  26. 27.
    Sakschewski B, von Bloh W, Huber V, Müller C, Bondeau A. Feeding 10 billion people under climate change: how large is the production gap of current agricultural systems? Ecol Model. 2014;288:103–11.CrossRefGoogle Scholar
  27. 28.
    Rolinski S, Müller C, Heinke J, Weindl I, Biewald A, Bodirsky BL, et al. Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geosci Model Dev Discuss. Geosci. Model Dev. 2018; 11, 429–451. Scholar
  28. 29.
    Boysen LR, Lucht W, Gerten D, Heck V. Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations. Environ Res Lett. 2016;11:095010.CrossRefGoogle Scholar
  29. 30.
    Fujii S, Kubota Y. Understory thinning reduces wood-production efficiency and tree species diversity in subtropical forest in southern Japan. J For Res. 2011;16:253–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Alice Boit
    • 1
    • 2
    Email author
  • Boris Sakschewski
    • 1
  • Lena Boysen
    • 1
  • Ana Cano-Crespo
    • 1
  • Jan Clement
    • 3
  • Nashieli Garcia Alaniz
    • 4
  • Kasper Kok
    • 5
  • Melanie Kolb
    • 6
    • 7
  • Fanny Langerwisch
    • 1
  • Anja Rammig
    • 1
    • 8
  • René Sachse
    • 9
  • Michiel van Eupen
    • 3
  • Werner von Bloh
    • 1
  • Delphine Clara Zemp
    • 10
    • 1
  • Kirsten Thonicke
    • 1
  1. 1.Earth System AnalysisPotsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Ecology and Ecosystem ModellingUniversity of PotsdamPotsdamGermany
  3. 3.Environmental Research (Alterra)Wageningen University and ResearchWageningenThe Netherlands
  4. 4.National Commission for the Knowledge and Use of BiodiversityCONABIOMexico CityMexico
  5. 5.Soil Geography and Landscape GroupWageningen University and ResearchWageningenThe Netherlands
  6. 6.Institute of GeographyNational Autonomous University of MexicoMexico CityMexico
  7. 7.National Commission for the Knowledge and Use of BiodiversityMexico CityMexico
  8. 8.School of Life Sciences WeihenstephanTechnical University of MunichFreisingGermany
  9. 9.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdamGermany
  10. 10.Department of Biodiversity, Macroecology and BiogeographyUniversity of GöttingenGöttingenGermany

Personalised recommendations