Advertisement

Blood Cell Counting and Segmentation Using Image Processing Techniques

  • Ayesha Hoor Chaudhary
  • Javeria Ikhlaq
  • Muhammad Aksam Iftikhar
  • Maham Alvi
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

The accurate count of a patient’s blood cells is vital for successful diagnosis of a plethora of diseases. Current systems deployed in Pakistan either rely on heavy and expensive machinery or is sometimes conducted manually. We propose the use of digital image processing techniques to build a cheaper alternative, that rely on digital images of blood smears, which are economical to produce, and are in fact a costless feature built-in to most existing lab microscopes. In this work, morphological image processing is deployed to segment the image and to differentiate and extract the blood cells from the plasma. The algorithm will exploit the shape and radius of blood cells for counting. After segmenting blood cells, their counting becomes a trivial task. The proposed system will be complementary to medical practitioners and provide a second opinion for their subjective diagnosis.

Keywords

Complete blood count Segmentation Image processing Watershed Overlapping cells 

References

  1. 1.
    Kasuya, H., Onda, H., Yoneyama, T., Sasaki, T., & Hori, T. (2003). Bedside monitoring of circulating blood volume after subarachnoid hemorrhage stroke. Stroke, 34(4), 956–960.CrossRefGoogle Scholar
  2. 2.
    Visconte, V., Tabarroki, A., Gerace, C., Al-Issa, K., Hsi, E. D., Silver, B. J., Lichtin, A. E., & Tiu, R. V. (2014). Somatic mutations in splicing factor 3b, subunit 1 (SF3B1) are a useful biomarker differentiate between clonal and non-clonal causes of sideroblastic anemia. Blood, 124, 5597.Google Scholar
  3. 3.
    Smith, M. T. (1996). The mechanism of benzene-induced leukemia: A hypothesis and speculations on the causes of leukemia. Environmental Health Perspectives, 104(Suppl 6), S1219–S1225. https://doi.org/10.1289/ehp.961041219.CrossRefGoogle Scholar
  4. 4.
    Audard, V., Bartolucci, P., & Stehlé, T. (2017). Sickle cell disease and albuminuria: recent advances in our understanding of sickle cell nephropathy. Clinical Kidney Journal, 10(4), 475–478.CrossRefGoogle Scholar
  5. 5.
    Aroon Kamath, M. (2014). Automated blood-cell analyzers. Can you count on them to count well?. Doctors Lounge Website. Available at: https://www.doctorslounge.com/index.php/blogs/page/17172
  6. 6.
    Mahmood, N. H., & Mansor, M. A. (2012). Red blood cells estimation using Hough transform technique. Signal & Image Processing, 3(2), 53.Google Scholar
  7. 7.
    Sharif, J. M., Miswan, M. F., Ngadi, M. A., Salam, M. S. H., & Bin Abdul Jamil, M. M. (2012). Red blood cell segmentation using masking and watershed algorithm: A preliminary study. In Biomedical Engineering (ICoBE), 2012 International Conference on (pp. 258-262). IEEE.Google Scholar
  8. 8.
    Bala, S., & Doegar, A. (2015). Automatic detection of sickle cell in red blood cell using watershed segmentation. International Journal of Advanced Research in Computer and Communication Engineering, 4(6), 488–491.Google Scholar
  9. 9.
    Joost Vromen, B. M. (2009). Red blood cell segmentation from SEM images. In: Image and Vision Computing New Zealand, (2009). IVCNZ’09. 24th International Conference, New Zealand.Google Scholar
  10. 10.
    Damahe, L. B., Krishna, R., & Janwe, N. (2011). Segmentation based approach to detect parasites and RBCs in blood cell images. International Journal of Computer Science and Applications, 4, 71–81.Google Scholar
  11. 11.
    Zack, G. W., et al. (1997). Automatic measurement of sister chromatid exchange frequency. The journal of histochemistry and cytochemistry: Official Journal of the Histochemistry Society, 25(7), 741–753.CrossRefGoogle Scholar
  12. 12.
    Scholz, J., Klein, M. C., Behrens, E. J., & Johansen-Berg, H. (2009). Training induces changes in white matter architecture. Nature Neuroscience, 12, 1370–1371.CrossRefGoogle Scholar
  13. 13.
    Lee, D. T., & Schachter, B. J. (1980). Two algorithms for constructing a delaunay triangulation. International Journal of Computer and Information Sciences, 9(3), 219–224.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sadeghian, F., Seman, Z., Ramli, A. R., Kahar, B. H. A., & Saripan, M. I. (2009). A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biological Procedures Online, 11(1), 196.CrossRefGoogle Scholar
  15. 15.
    Jiang, K., Liao, Q. M., & Dai, S. Y. (2003). A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (pp. 2820–2825). IEEE.Google Scholar
  16. 16.
    Torre, V., & Poggio, T. A. (1986). On edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(2), 147–163.CrossRefGoogle Scholar
  17. 17.
    Acharjya, P. P., Sinha, A., Sarkar, S., Dey, S., & Ghosh, S. (2013). A new approach of watershed algorithm using distance transform applied to image segmentation. International Journal of Innovative Research in Computer and Communication Engineering, 1(2), 185–189.Google Scholar
  18. 18.
    Kakarla, J., & Majhi, B. (2013). A new optimal delay and energy efficient coordination algorithm for WSAN. In 2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1–6).Google Scholar
  19. 19.
    Francos, J. M., Meiri, A. Z., & Porat, B. (1993). A unified texture model based on a 2-D Wold-like decomposition. IEEE Transactions on Signal Processing, 41(8), 2665–2678.CrossRefGoogle Scholar
  20. 20.
    Mazalan, S. M. Automated red blood cells counting in peripheral blood smear image using Circular Hough Transform. In: Artificial intelligence, modelling and simulation (AIMS), first international conference on artificial intelligence, modelling & simulation, IEEE, (2013).Google Scholar
  21. 21.
    Celenk, M. (1990). A color clustering technique for image segmentation. Computer Vision, Graphics, and Image Processing, 52(02), 145–170.CrossRefGoogle Scholar
  22. 22.
    Tcheslavski, G. V. (n.d.). Morphological image processing: Basic algorithms. Retrieved from http://ee.lamar.edu/gleb/dip/ (7/05/2016).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ayesha Hoor Chaudhary
    • 1
  • Javeria Ikhlaq
    • 1
  • Muhammad Aksam Iftikhar
    • 1
  • Maham Alvi
    • 2
  1. 1.Department of Computer ScienceCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Punjab University College of Information Technology, Quaid-e-Azam Campus, University of the PunjabLahorePakistan

Personalised recommendations