Modeling and Simulation of Resource-Constrained Vaccination Strategies and Epidemic Outbreaks

  • Rehan Ashraf
  • Bushra Zafar
  • Sohail Jabbar
  • Mudassar AhmadEmail author
  • Syed Hassan Ahmed
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


Ongoing research on epidemic modeling is seeking for interventions to contain epidemic spread. Developing countries are at high risk of epidemics and pose a threat to developed countries as well. We have developed an epidemic scenario simulator to assist in choice of optimal vaccination strategy in case of scarce resources. The objective of this model is to explore the impact of different strategies on virus spread for different diseases. It is known that due to limited resources, vaccination of whole population is not feasible. Our simulation explores the extent to which the effect of vaccination of a subset of population can be effective to minimize the spread of disease. Further at any point in time, the model gives information regarding the health status of population.


  1. 1.
    Inhorn, M. C., & Brown, P. J. (1990). The anthropology of infectious disease. Annual Review of Anthropology, 19, 89–117.CrossRefGoogle Scholar
  2. 2.
    WHO. Immunization, Vaccines and Biologicals. Available: Accessed: 20 Nov 2015.
  3. 3.
    WHO. (2008). Global burden of disease 2004 update: Selected figures and tables. Geneva: World Health Organization.Google Scholar
  4. 4.
    Cohen, J., & Enserink, M. (2002). Rough-and-tumble behind Bush’s smallpox policy. Science, 298, 2312–2316.CrossRefGoogle Scholar
  5. 5.
    Feldmann, H., Jones, S., Klenk, H.-D., & Schnittler, H.-J. (2003). Ebola virus: From discovery to vaccine. Nature Reviews Immunology, 3, 677–685CrossRefGoogle Scholar
  6. 6.
    Immunizations. Available: Accessed: 25 Dec 2015.
  7. 7.
    Yorke, J. A., Nathanson, N., Pianigiani, G., & Martin, J. (1979). Seasonality and the requirements for perpetuation and eradication of viruses in populations. American Journal of Epidemiology, 109, 103–123.CrossRefGoogle Scholar
  8. 8.
    Wilensky, U. (1998). NetLogo Virus model. Available: Version: 5.1.0.
  9. 9.
    Wilensky, U. (1999). Netlogo. Available: Version: 5.1.0.
  10. 10.
    Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  11. 11.
    Allen, L. J., Brauer, F., Van den Driessche, P., & Wu, J. (2008). Mathematical epidemiology. Berlin/Heidelberg: Springer.Google Scholar
  12. 12.
    Holzmann, H., Hengel, H., Tenbusch, M., Doerr, H. W. (2016). Eradication of measles: Remaining challenges. Medical Microbiology and Immunology, 205, 201–208.CrossRefGoogle Scholar
  13. 13.
    Osterholm, M., Moore, K., Ostrowsky, J., Kimball Baker, K., Farrar, J., & Wellcome Trust-CIDRAP Ebola Vaccine Team. (2016). The Ebola Vaccine Team B: A model for promoting the rapid development of medical countermeasures for emerging infectious disease threats. The Lancet Infectious Diseases, 16, e1–e9.CrossRefGoogle Scholar
  14. 14.
    Prada, J., Metcalf, C., Takahashi, S., Lessler, J., Tatem, A., & Ferrari, M. (2017). Demographics, epidemiology and the impact of vaccination campaigns in a measles-free world Can elimination be maintained? Vaccine, 35, 1488–1493.CrossRefGoogle Scholar
  15. 15.
    Alexander, M., Moghadas, S., Rohani, P., Summers, A. (2006). Modelling the effect of a booster vaccination on disease epidemiology. Journal of Mathematical Biology, 52, 290–306.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Laskowski, M., Xiao, Y., Charland, N., Moghadas, S. (2015). Strategies for early vaccination during novel influenza outbreaks. Scientific Reports, 5, 1–13.CrossRefGoogle Scholar
  17. 17.
    Libster, R. (2014). The power of herd immunity. Available: 14:41 Filmed Nov 2014
  18. 18.
    Atkinson, W. L., Pickering, L. K., Schwartz, B., Weniger, B. G., Iskander, John K., & Watson, J. C. (2002). General recommendations on immunization. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP) MMWR Recomm Rep, 51, 1–35.Google Scholar
  19. 19.
    Johnson, M., Gilliam, T., & Karsai, I. (2009). The effect of infectiousness, duration of sickness, and chance of recovery on a population: A simulation study. Bios, 80, 99–104.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rehan Ashraf
    • 1
  • Bushra Zafar
    • 1
  • Sohail Jabbar
    • 1
  • Mudassar Ahmad
    • 1
    Email author
  • Syed Hassan Ahmed
    • 1
  1. 1.Department of Computer ScienceNational Textile UniversityFaisalabadPakistan

Personalised recommendations