Advertisement

PATENet: Pairwise Alignment of Time Evolving Networks

  • Shlomit GurEmail author
  • Vasant G. Honavar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10934)

Abstract

Networks that change over time, e.g. functional brain networks that change their structure due to processes such as development or aging, are naturally modeled by time-evolving networks. In this paper we present PATENet, a novel method for aligning time-evolving networks. PATENet offers a mathematically-sound approach to aligning time evolving networks. PATENet leverages existing similarity measures for networks with fixed topologies to define well-behaved similarity measures for time evolving networks. We empirically explore the behavior of PATENet through synthetic time evolving networks under a variety of conditions.

Keywords

Network science Multilayer networks Temporal alignment 

Notes

Acknowledgments

This project was supported in part by the National Center for Advancing Translational Sciences, National Institutes of Health through Grant UL1 TR000127 and TR002014, by the National Science Foundation, through Grant SHF 1518732, the Center for Big Data Analytics and Discovery Informatics at Pennsylvania State University, the Edward Frymoyer Endowed Professorship in Information Sciences and Technology at Pennsylvania State University and the Sudha Murty Distinguished Visiting Chair in Neurocomputing and Data Science funded by the Pratiksha Trust at the Indian Institute of Science [both held by Vasant Honavar]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors. We thank Sanghack Lee for helpful discussions during the course of this work.

References

  1. 1.
    Albert, R., Barabasi, A.L.: Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85(24), 5234–5237 (2000).  https://doi.org/10.1103/PhysRevLett.85.5234CrossRefGoogle Scholar
  2. 2.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).  https://doi.org/10.1126/science.286.5439.509MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017).  https://doi.org/10.1038/nn.4502CrossRefGoogle Scholar
  4. 4.
    Caspi, Y., Irani, M.: Spatio-temporal alignment of sequences. IEEE Trans. Pat. Anal. Mach. Int. 24(11), 1409–1424 (2002).  https://doi.org/10.1109/TPAMI.2002.1046148CrossRefGoogle Scholar
  5. 5.
    Dorogovtsev, S.N., Mendes, J.F.F.: Scaling behaviour of developing and decaying networks. Europhys. Lett. 52(1), 33–39 (2000).  https://doi.org/10.1209/epl/i2000-00400-0CrossRefGoogle Scholar
  6. 6.
    Elzinga, C.H.: Distance, similarity and sequence comparison. In: Blanchard, P., Bühlmann, F., Gauthier, J.A. (eds.) Advances in Sequence Analysis: Theory, Method, Applications. LCRSP, vol. 2, pp. 51–73. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04969-4_4CrossRefGoogle Scholar
  7. 7.
    Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network alignment and network comparison. Inf. Sci. 346, 180–197 (2016).  https://doi.org/10.1016/j.ins.2016.01.074MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Erdos, P., Renyi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234–263 (2015).  https://doi.org/10.1140/epjb/e2015-60657-4CrossRefGoogle Scholar
  10. 10.
    Holme, P., Saramki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012).  https://doi.org/10.1016/j.physrep.2012.03.001CrossRefGoogle Scholar
  11. 11.
    Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014).  https://doi.org/10.1093/comnet/cnu016CrossRefGoogle Scholar
  12. 12.
    Koutra, D., Vogelstein, J.T., Faloutsos, C.: DELTACON: a principled massive-graph similarity function. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 162–170. SIAM (2013).  https://doi.org/10.1137/1.9781611972832.18
  13. 13.
    Lee, W.N., Das, A.K.: Local alignment tool for clinical history: temporal semantic search of clinical databases. In: AMIA Annual Symposium Proceedings, pp. 437–441 (2010)Google Scholar
  14. 14.
    Li, A., Cornelius, S.P., Liu, Y.Y., Wang, L., Barabasi, A.L.: The fundamental advantages of temporal networks. Science 358(6366), 1042–1046 (2017).  https://doi.org/10.1126/science.aai7488CrossRefGoogle Scholar
  15. 15.
    Luo, G., Cordier, F., Seo, H.: Spatio-temporal segmentation for the similarity measurement of deforming meshes. Vis. Comput. 32(2), 243–256 (2016).  https://doi.org/10.1007/s00371-015-1178-8CrossRefGoogle Scholar
  16. 16.
    Madhyastha, T., Peverill, M., Koh, N., McCabe, C., Flournoy, J., Mills, K., King, K., Pfeifer, J., McLaughlin, K.A.: Current methods and limitations for longitudinal fMRI analysis across development. Dev. Cogn. Neurosci. (2017).  https://doi.org/10.1016/j.dcn.2017.11.006CrossRefGoogle Scholar
  17. 17.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981).  https://doi.org/10.1016/0022-2836(81)90087-5CrossRefGoogle Scholar
  18. 18.
    Towfic, F., Greenlee, M.H.W., Honavar, V.: Aligning biomolecular networks using modular graph kernels. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 345–361. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04241-6_29CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkUSA
  2. 2.College of Information Sciences and TechnologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations