Advertisement

Following the Common Thread Through Word Hierarchies

  • Matthias J. FeilerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10934)

Abstract

In this paper we develop a new algorithm for automatic taxonomy construction from a text corpus. In contrast to existing work, our objective is not to develop a general purpose lexicon or ontology but to identify the structure in a time–ordered sequence of documents. The idea is to identify “lead” words by which we are able to follow the common thread in the public discourse on a specific topic. Our taxonomy represents the backbone of the discourse (including names of protagonists and places) and may change over time. It is thus less rigid and universal than a lexicon and instead targets relationships that are valid in a given context. We present an example to illustrate the idea.

Keywords

Taxonomy learning Topic tracking On-line discourse 

References

  1. 1.
    Chu, Y.J.: On the shortest arborescence of a directed graph. Sci. Sin. 14, 1396–1400 (1965)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Clark, H.H., Marshall, C.R.: Definite reference and mutual knowledge. Psycholinguistics: Crit. Concepts Psychol. 414 (2002)Google Scholar
  3. 3.
    Cohen, T., Widdows, D.: Empirical distributional semantics: methods and biomedical applications. J. Biomed. Inform. 42(2), 390–405 (2009)CrossRefGoogle Scholar
  4. 4.
    Downs, A.: Up and down with ecology-the issue-attention cycle. Public Interest 28, 38–50 (1972)Google Scholar
  5. 5.
    Edmonds, J.: Optimum branchings. J. Res. Natl. Bureau Stan. B 71(4), 233–240 (1967)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fountain, T., Lapata, M.: Taxonomy induction using hierarchical random graphs. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 466–476. Association for Computational Linguistics (2012)Google Scholar
  7. 7.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: IJCAI, vol. 7, pp. 1606–1611 (2007)Google Scholar
  8. 8.
    Gavins, J.: Text World Theory. Edinburgh University Press, Edinburgh (2007)Google Scholar
  9. 9.
    Gick, M.L., Holyoak, K.J.: Schema induction and analogical transfer. Cogn. Psychol. 15(1), 1–38 (1983)CrossRefGoogle Scholar
  10. 10.
    Goffman, E.: Forms of Talk. University of Pennsylvania Press, Philadelphia (1981)Google Scholar
  11. 11.
    Grice, H.P.: Logic and conversation, pp. 41–58 (1975)Google Scholar
  12. 12.
    Gumperz, J.J.: Mutual inferencing in conversation. In: Mutualities in Dialogue, pp. 101–123 (1995)Google Scholar
  13. 13.
    Heritage, J.: Conversation analysis and institutional talk. In: Handbook of Language and Social Interaction, pp. 103–147 (2005)Google Scholar
  14. 14.
    Hovy, E.: Comparing sets of semantic relations in ontologies. In: Green, R., Bean, C.A., Myaeng, S.H. (eds.) The Semantics of Relationships, vol. 3, pp. 91–110. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-94-017-0073-3_6CrossRefGoogle Scholar
  15. 15.
    Kozareva, Z., Hovy, E.: A semi-supervised method to learn and construct taxonomies using the web. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1110–1118. Association for Computational Linguistics (2010)Google Scholar
  16. 16.
    Kozareva, Z., Riloff, E., Hovy, E.H.: Semantic class learning from the web with hyponym pattern linkage graphs. In: ACL, vol. 8, pp. 1048–1056 (2008)Google Scholar
  17. 17.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an on-line lexical database. Int. J. Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  18. 18.
    Pantel, P., Pennacchiotti, M.: Espresso: leveraging generic patterns for automatically harvesting semantic relations. In: Proceedings of the 21st International Conference on Computational Linguistics, pp. 113–120. Association for Computational Linguistics (2006)Google Scholar
  19. 19.
    Pickering, M.J., Garrod, S.: Toward a mechanistic psychology of dialogue. Behav. Brain Sci. 27(02), 169–190 (2004)Google Scholar
  20. 20.
    Sacks, H., Schegloff, E.A., Jefferson, G.: A simplest systematics for the organization of turn-taking for conversation. Language 696–735 (1974)CrossRefGoogle Scholar
  21. 21.
    Schegloff, E.A.: Sequence Organization in Interaction: Volume 1: A Primer in Conversation Analysis, vol. 1. Cambridge University Press, Cambridge (2007)Google Scholar
  22. 22.
    Stalnaker, R.: Common ground. Linguist. Philos. 25(5–6), 701–721 (2002)CrossRefGoogle Scholar
  23. 23.
    Turner, J.C.: Social Influence. Thomson Brooks/Cole Publishing Co, Pacific Grove (1991)Google Scholar
  24. 24.
    Velardi, P., Faralli, S., Navigli, R.: Ontolearn reloaded: a graph-based algorithm for taxonomy induction. Comput. Linguist. 39(3), 665–707 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of ZurichZürichSwitzerland

Personalised recommendations