Advertisement

Toward a Better Assessment of Occupational Exposure to Nanoparticles Taking into Account Work Activities

  • Louis Galey
  • Sabyne Audignon
  • Olivier Witschger
  • Aude Lacourt
  • Alain Garrigou
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 819)

Abstract

Numerous industrial sectors and processes may cause worker exposure to ultrafine particles or engineered nanoparticles (NPs). These exposures may affect workers’ health if control measures (organisational, engineering, PPE…) are not properly defined, used and maintained. Today the available exposure data are insufficient for epidemiological studies. Part of the reason for this lack of data may be found in the variety of approaches used to assess worker exposure.

In this work, we propose an approach integrating aerosol measurement and work activity analysis to enhance exposure assessment, based on present recommendations to assess occupational exposure to NPs. This multi-disciplinary approach combines information gathering, real-time measurements and aerosol sampling (for physicochemical analyses), contextual information and work activity observation, video exposure monitoring, interviews with stakeholders, and development of appropriate safety measures.

Real exposure situations characterized as typical exposure situations, permitted to gather information on exposing work activities that can occur on workplaces thus making the determinants of exposure more visible. Work activity explains some variations on exposures objectified by video and measurements. Exposures become visible and documented, which triggers debate, discussions and even in some cases opens up new debate spaces. This method aims to help address the concerns of companies introducing new technology that is conducive to important work transformations. In this way, companies break through technological barriers, transform work practices, which makes an upgrade of prevention practices necessary. The approach also aims at setting a landmark method for future epidemiological studies.

Keywords

Exposure Measurement Typical exposure situation 

Notes

Acknowledgments

The authors thank Rémy Anselm for his careful reading of the manuscript.

References

  1. Asbach C, Alexander C, Clavaguera S, Dahmann D, Dozol H, Faure B, Fierz M, Fontana L, Iavicolif I, Kaminski H, MacCalman L, Meyer-Plath A, Simonow B, van Tongeren M, Todea AM (2017) Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci Total Environ 603–604:793–806.  https://doi.org/10.1016/j.scitotenv.2017.03.049CrossRefGoogle Scholar
  2. Bakand S, Hayes A (2016) Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17(6).  https://doi.org/10.3390/ijms17060929
  3. Barcellini F, Van Belleghem L, Daniellou F (2014) Design projects as opportunities for the development of activities. In: Falzon P (ed) Constr Ergon, pp 187–204. CRC Press.  https://doi.org/10.1201/b17456-16
  4. Béguin P (1998) Participation et simulation, in V. Pilnière et O. Lhospital (textes rassemblés par), Participation, représentation, décisions dans l’intervention ergonomique, Actes des Journées de Bordeaux sur la pratique de l’ergonomie, Bordeaux, Éditions du Laboratoire d’ergonomie des systèmes complexes. Université Victor-Segalen, Bordeaux 2, pp 123–131Google Scholar
  5. Bekker C, Kuijpers E, Brouwer DH, Vermeulen R, Fransman W (2015) Occupational exposure to nano-objects and their agglomerates and aggregates across various life cycle stages; a broad-scale exposure study. Ann Occup Hyg, mev023.  https://doi.org/10.1093/annhyg/mev023
  6. Beurskens-Comuth PAWV, Verbist K, Brouwer D (2011) Video exposure monitoring as part of a strategy to assess exposure to nanoparticles. Ann Occup Hyg 55(8):937–945.  https://doi.org/10.1093/annhyg/mer060CrossRefGoogle Scholar
  7. Broberg O, Andersen V, Seim R (2011) Participatory ergonomics in design processes: the role of boundary objects. Appl Ergon 42(3):464–472.  https://doi.org/10.1016/j.apergo.2010.09.006CrossRefGoogle Scholar
  8. Brouwer D, Berges M, Virji MA, Fransman W, Bello D, Hodson L, Gabriel S, Tielemans E (2012) Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann Occup Hyg 56(1):1–9.  https://doi.org/10.1093/annhyg/mer099CrossRefGoogle Scholar
  9. Buchmann W, Landry A (2010) Intervenir sur les TMS. Un modèle des Troubles Musculo-squelettiques comme objet intermédiaire entre ergonomes et acteurs de l’entreprise ? Activités 07(7-2).  https://doi.org/10.4000/activites.2418
  10. CEN (2018) pr EN 17058 - Workplace exposure - Assessment of inhalation exposure to nano-objects and their agglomerates and aggregates. CENGoogle Scholar
  11. Clot Y (2008) Travail et pouvoir d’agir. Presses Universitaires de FranceGoogle Scholar
  12. Dagiral É, Jouzel J-N, Mias A, Peerbaye A (2016) Mesurer pour prévenir? Terrains & travaux 28:5–20Google Scholar
  13. Daniellou F (1992) Le statut de la pratique et des connaissances dans l’intervention ergonomique de conception (Habilitation à diriger des recherches). Université Victor Segalen-Bordeaux 2-ISPED, Laboratoire d’ergonomie des systèmes complexesGoogle Scholar
  14. Daniellou F (2004) 21. L’ergonomie dans la conduite de projets de conception de systèmes de travail. In: Falzon P Ergonomie (1r éd, p 359). Presses Universitaires de France.  https://doi.org/10.3917/puf.falzo.2004.01.0359
  15. Daniellou F, Garrigou A (1992) La mise en œuvre des situations passées et des situations futures dans la participation des opérateurs à la conception. In Représentations pour l’action (Octarès éd). Annie Weill-Fassina, Pierre Rabardel, Danièle DuboisGoogle Scholar
  16. Duarte F, Lima F (2012) Anticiper l’activité par les configurations d’usage : proposition méthodologique pour conduite de projet. Activités 09(2).  https://doi.org/10.4000/activites.314
  17. Dutier J, Guennoc F, Escouteloup J (2015) The ergonomist: a full design actor example of an ergonomic action. Procedia Manuf 3:5830–5837.  https://doi.org/10.1016/j.promfg.2015.07.837CrossRefGoogle Scholar
  18. Eastlake AC, Beaucham C, Martinez KF, Dahm MM, Sparks C, Hodson LL, Geraci CL (2016) Refinement of the Nanoparticle Emission Assessment Technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0). J Occup Environ Hyg.  https://doi.org/10.1080/15459624.2016.1167278
  19. Garrigou A, Daniellou F, Carballeda G, Ruaud S (1995) Activity analysis in participatory design and analysis of participatory design activity. Int J Ind Ergon 15(5):311–327.  https://doi.org/10.1016/0169-8141(94)00079-ICrossRefGoogle Scholar
  20. Garrigou A (1992 janvier 1). Les apports des confrontations d’orientation socio-cognitives au sein de processus de conception participatifs : le rôle de l’ergonomie. CNAM, Paris. http://www.theses.fr/1993CNAM0160
  21. Garrigou A, Baldi I, Le Frious P, Anselm R, Vallier M (2011) Ergonomics contribution to chemical risks prevention: an ergotoxicological investigation of the effectiveness of coverall against plant pest risk in viticulture. Appl Ergon 42(2):321–330.  https://doi.org/10.1016/j.apergo.2010.08.001CrossRefGoogle Scholar
  22. Garrigou A, Carballeda G, Daniellou F (1998) The role of ‘know-how’ in maintenance activities and reliability in a high-risk process control plant. Appl Ergon 29(2):127–131.  https://doi.org/10.1016/S0003-6870(96)00060-9CrossRefGoogle Scholar
  23. Garrigou A, Peeters S, Jackson M, Sagory P, Carballeda, G (2004) 30. Apports de l’ergonomie à la prévention des risques professionnels. In: Falzon P (ed) Ergonomie (1r éd, p 497). Presses Universitaires de France. http://www.cairn.info/ergonomie–9782130514046-page-497.htm
  24. Garrigou A, Thibault J-F, Jackson M, Mascia F (2001) Contributions et démarche de l’ergonomie dans les processus de conception. Perspectives interdisciplinaires sur le travail et la santé (3-2).  https://doi.org/10.4000/pistes.3725
  25. Grosjean J, Neboit M (2000) Ergonomie et prévention en conception des situations de travail. Hygiène et sécurité du travail, 179 (ND 2127-179-00)Google Scholar
  26. Jeantet A (1998) Les objets intermédiaires dans la conception. Éléments pour une sociologie des processus de conception. Sociologie du travail 40(3):291–316.  https://doi.org/10.3406/sotra.1998.1333CrossRefGoogle Scholar
  27. Jeffroy F (1987) Maîtrise de l’exploitation d’un système micro-informatique par des utilisateurs non-informaticiens: analyse ergonomique et processus cognitif. Paris 13. http://www.theses.fr/1987PA131020
  28. Judon N, Hella F, Pasquereau P, Garrigou A (2015) Towards an integrated prevention of chemical risk of dermal exposure to bitumen in road workers: development of a methodology based on ergotoxicology. Perspectives interdisciplinaires sur le travail et la santé, (17-2).  https://doi.org/10.4000/pistes.4586
  29. Mollo V, Falzon P (2004) Auto- and allo-confrontation as tools for reflective activities. Appl Ergon 35(6):531–540.  https://doi.org/10.1016/j.apergo.2004.06.003CrossRefGoogle Scholar
  30. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839.  https://doi.org/10.1289/ehp.7339CrossRefMATHGoogle Scholar
  31. OECD (2015) Harmonized tiered approach to measure ad assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. ENV/JM/MONO(2015)19, (No. 55). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.3255&rep=rep1&type=pdf
  32. Rosén G, Andersson I-M, Walsh PT, Clark RDR, Säämänen A, Heinonen K, Riipinen H, Pääkkönen R (2005) A review of video exposure monitoring as an occupational hygiene tool. Ann Occup Hyg 49(3):201–217.  https://doi.org/10.1093/annhyg/meh110CrossRefGoogle Scholar
  33. Schön DA (1983) The reflective practitioner: how professionals think in action. Basic Books, New YorkGoogle Scholar
  34. Vinck D (2009) From intermediary object towards boundary-object. Revue d’anthropologie des connaissances 3(1):51–72CrossRefGoogle Scholar
  35. Woskie SR, Bello D, Virji MA, Stefaniak AB (2010) Understanding workplace processes and factors that influence exposures to engineered nanomaterials. Int J Occup Environ Health 16(4):365–377.  https://doi.org/10.1179/107735210799159950CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Louis Galey
    • 1
  • Sabyne Audignon
    • 1
  • Olivier Witschger
    • 2
  • Aude Lacourt
    • 1
  • Alain Garrigou
    • 1
  1. 1.University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219BordeauxFrance
  2. 2.Institut National de Recherche et de Sécurité (INRS)Vandoeuvre Les NancyFrance

Personalised recommendations