Autostereoscopic Displays for In-Vehicle Applications

  • Andre DettmannEmail author
  • Angelika C. Bullinger
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 823)


Novel technologies like autostereoscopic 3D displays are providing a perception of depth in a scene towards users. Those added spatial informations allow a better user performance in recognizing and classifying on-screen objects as well as enabling better judgements of positions and distances of displayed objects and on-screen elements. Autostereoscopic 3D displays, if implemented user-friendly into Advanced Driver Assistance Systems (ADAS) or In-Vehicle Information Systems (IVIS), can increase the effectiveness of such systems by providing distinguishable spatial relationships. Possible applications using an autostereoscopic display where users’ can benefit from spatial cues are for instance the instrument cluster, the navigation device or an intersection assistant. When implemented correctly, 3D displays will allow a better understanding of complex user interfaces and are overall capable of lowering driver distraction and therefore, benefit directly towards traffic safety. We present a study with 40 participants judging the criticality of an intersection manoeuvre in a simulated traffic environment using an autostereoscopic display. The assumption of the experiment is that autostereoscopic monitors in comparison to 2D monitors allow a better assessment of traffic situations in the context of ADAS/IVIS applications. Results show, that 3D displays enable a better accuracy and judgement of positions in simulated traffic situations. While the technology has an impact on the participants’ judgements, perspective does not. Regarding visual fatigue, the usage of autostereoscopic displays seems to be unproblematic despite a long exposure time. Also, regarding the special requirements in content creation we recommend a disparity level with a high perceptual performance and low visual fatigue.


Autostereoscopic 3D HMI ADAS IVIS Disparity 



The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the framework of IVIS-3D (project number 03ZZ0406).


  1. 1.
    Bangor AW (2000) Display technology and ambient illuminat ion influences on visual fatigue at VDT workstations. Dissertation, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  2. 2.
    Broy N, Alt F, Schneegass S et al (2014) 3D displays in cars. Exploring the user performance for a stereoscopic instrument cluster. In: Boyle LN (ed) Automotive UI 2014, proceedings of the 6th international conference on automotive user interfaces and interactive vehicular applications, pp 1–9Google Scholar
  3. 3.
    Broy N, Guo M, Schneegass S et al (2015) Introducing novel technologies in the car - conducting a real-world study to Test 3D dashboards. In: Burnett G (ed) Automotive UI 2015, proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications. ACM, New York, pp 179–186Google Scholar
  4. 4.
    Broy N (2016) Stereoscopic 3D user interfaces. Exploring the potentials and risks of 3D displays in cars. Dissertation, Universität StuttgartGoogle Scholar
  5. 5.
    Chen J, Oden R, Kenny C et al (2010) Stereoscopic displays for robot teleoperation and simulated driving. Proc Hum Factors Ergon Soc Ann Meet 54(19):1488–1492CrossRefGoogle Scholar
  6. 6.
    Chen J, Oden R, Merritt JO (2014) Utility of stereoscopic displays for indirect-vision driving and robot teleoperation. Ergonomics 57(1):12–22CrossRefGoogle Scholar
  7. 7.
    Coutant BE, Westheimer G (1993) Population distribution of stereoscopic ability. Oph Phys Optics 13(1):3–7CrossRefGoogle Scholar
  8. 8.
    Fricke N (2009) Gestaltung zeit- und sicherheitskritischer Warnungen im Fahrzeug. Dissertation, Technische Universität BerlinGoogle Scholar
  9. 9.
    Geyer S (2013) Entwicklung und Evaluierung eines kooperativen Interkationskonzepts an Entschiedungspunkten für die teilautomatisierte, manöverbasierte Fahrzeugführung. VDI Verlag GmbH, Düsseldorf, Fahrzeugtechnik TU DarmstadtGoogle Scholar
  10. 10.
    Goldstein EB (ed) (2015) Wahrnehmungspsychologie. Der Grundkurs, 9th edn. Springer Lehrbuch, BerlinGoogle Scholar
  11. 11.
    Heino A, van der Molen HH, Wilde GJ (1996) Differences in risk experience between sensation avoiders and sensation seekers. Pers Individ Differ 20(1):71–79CrossRefGoogle Scholar
  12. 12.
    Hohm A (2010) Umfeldklassifikation und Identifikation von Überholzielen für ein Überholassistenzsystem. Fortschrittberichte VDI, vol 727. VDI Verlag GmbH, DüsseldorfGoogle Scholar
  13. 13.
    Horswill MS (2016) Hazard perception in driving. Curr Dir Psychol Sci 25(6):425–430CrossRefGoogle Scholar
  14. 14.
    Hoyle RH, Stephenson MT, Palmgreen P et al (2002) Reliability and validity of a brief measure of sensation seeking. Pers Individ Differ 32(3):401–414CrossRefGoogle Scholar
  15. 15.
    Kühn M, Hannawald L (2015) Verkehrssicherheit und Potenziale von Fahrerassistenzsystemen. In: Winner H, Hakuli S, Lotz F et al (eds) Handbuch Fahrerassistenzsysteme. Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 3. Auflage. Springer Vieweg, pp 55–70Google Scholar
  16. 16.
    Lambooij M, Ijsselsteijn WA, Fortuin M et al (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Technol 53(3):1–14CrossRefGoogle Scholar
  17. 17.
    Lang J (1982) Mikrostrabismus. Die Bedeutung der Mikrotropie für die Amblyopie, für die Pathogenese des grossen Schielwinkels und für die Heredität des Strabismus, 2. Auflage. Bücherei des Augenarztes, Heft 62. Enke, StuttgartGoogle Scholar
  18. 18.
    Mangione CM, Lee PP, Gutierrez PR et al (2001) Development of the 25-item national eye institute Visual Function Questionnaire (VFQ-25). Arch Ophthalmol 119:1050–1058CrossRefGoogle Scholar
  19. 19.
    Martinez Escobar M, Junke B, Holub J et al (2015) Evaluation of monoscopic and stereoscopic displays for visual-spatial tasks in medical contexts. Comput Biol Med 61:138–143. Scholar
  20. 20.
    Mattes S, Hallén A (2009) Surrogate distraction measurement techniques: The Lane Change test. In: Regan MA, Lee JD, Young KL (eds) Driver distraction. Theory, effects, and mitigation. CRC Press, Boca Ratón, pp 107–122Google Scholar
  21. 21.
    McIntire JP, Havig PR, Geiselman EE (2014) Stereoscopic 3D displays and human performance: a comprehensive review. Displays 35(1):18–26CrossRefGoogle Scholar
  22. 22.
    Mikkola M, Boev A, Gotchev A (2010) Relative importance of depth cues on portable autostereoscopic display. In: Proceedings of the 3rd workshop on mobile video delivery. ACM, New York, pp 63–68Google Scholar
  23. 23.
    NHTSA (2010) Overview of the National Highway Traffic Safety Administration’s Driver Distraction Program, Washington, USAGoogle Scholar
  24. 24.
    Ntuen CA, Goings M, Reddin M et al (2009) Comparison between 2-D & 3-D using an autostereoscopic display: the effects of viewing field and illumination on performance and visual fatigue. Int J Ind Ergon 39(2):388–395. Scholar
  25. 25.
    Pitts MJ, Hasedžić E, Skrypchuk L et al (2015) Adding depth: establishing 3D display fundamentals for automotive applications. SAE Technical Paper 2015-01-0147Google Scholar
  26. 26.
    Regan MA, Hallett C, Gordon CP (2011) Driver distraction and driver inattention: definition, relationship and taxonomy. Accid Anal Prev 43(5):1771–1781CrossRefGoogle Scholar
  27. 27.
    Rudin-Brown CM, Edquist J, Lenné MG (2014) Effects of driving experience and sensation-seeking on drivers’ adaptation to road environment complexity. Saf Sci 62:121–129CrossRefGoogle Scholar
  28. 28.
    Sandbrink J, Rhede J, Vollrath M et al (2017) 3D-Displays - Das ungenutzte Potential? Die Wahrnehmung von stereoskopischen Informationen im Fahrzeug. Der Fahrer im 21. Jahrhundert. Der Mensch im Fokus technischer Innovationen. VDI Verlag GmbH, Düsseldorf, pp 153–164Google Scholar
  29. 29.
    Sassi A, Pöyhönen P, Jakonen S et al (2014) Enhanced user performance in an image gallery application with a mobile autostereoscopic touch display. Displays 35(3):152–158CrossRefGoogle Scholar
  30. 30.
    Szczerba J, Hersberger R (2014) The use of stereoscopic depth in an automotive instrument display. Proc Hum Factors Ergon Soc Annu Meet 58(1):1184–1188CrossRefGoogle Scholar
  31. 31.
    Tory M, Möller T (2004) Human factors in visualization research. IEEE Trans Vis Comput Graph 10(1):72–84CrossRefGoogle Scholar
  32. 32.
    van Beurden M, van Hoey G, Hatzakis H et al (2009) Stereoscopic displays in medical domains: a review of perception and performance effects. In: Rogowitz BE, Pappas TN (eds) Human vision and electronic imaging XIV. SPIE, Bellingham, pp 1–15Google Scholar
  33. 33.
    Winner H, Hakuli S, Lotz F et al (eds) (2015) Handbuch Fahrerassistenzsysteme. Grundlagen, 3. Auflage. ATZ/MTZ-Fachbuch. Springer ViewegGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Professorship of Ergonomics and Innovation ManagementChemnitz University of TechnologyChemnitzGermany

Personalised recommendations