Advertisement

The Development of an Adaptive Device for Children with a Hand Impairment

  • E. Haring
  • K. Vaes
  • S. Truijen
  • M. Van Nuffel
  • L. Quirijnen
  • S. Verwulgen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 824)

Abstract

Children with mild symbrachydactyly (<4 missing fingers) are considered to have a low-degree of functional impairment. In this study, we suggest an adaptive device and evaluate the device on its beneficiary effects. Five children (age 6–10) are fitted with a prototype and are asked to train with the device at home for a period of three weeks. The SHAP-C test is used to measure the level of functionality of the healthy hand, the impaired hand and the prototype of the adaptive device. With the SHAP-C, no additional beneficial effects of the device were measured. However, children tended to use the device well for specific activities such as holding a fork during dinner. Also, three out of five reacted positively on the colourful design of the prototype adaptive device, wanting to show the device to family, friends and classmates. The results provide feedback for further improvements of adaptive devices to enhance motoric functionality and empower children with mild to severe symbrachydactyly.

Keywords

Adaptive device Assistive technology Upper extremity deformities Symbrachydactyly 3D images 3D printing 

References

  1. 1.
    Jong I et al (2012) Activity and participation of children and adolescents with unilateral congenital below elbow deficiency: an online focus group study. J Rehabil Med 44(10):885–892CrossRefGoogle Scholar
  2. 2.
    Vasluian E, et al Opinions of youngsters with congenital below-elbow deficiency, and those of their parents and professionals concerning prosthetic use and rehabilitation treatmentGoogle Scholar
  3. 3.
    Kanas JL, Holowka M (2009) Adaptive upper extremity prostheses for recreation and play. J. Pediatr Rehabil. Med. 2(3):181–187Google Scholar
  4. 4.
    Biddiss EA, Chau TT (2007) Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 31(3):236–257CrossRefGoogle Scholar
  5. 5.
    Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86(12):977–987CrossRefGoogle Scholar
  6. 6.
    Postema K, van der Donk V, van Limbeek J, Rijken RA, Poelma MJ (1999) Prosthesis rejection in children with a unilateral congenital arm defect. Clin Rehabil 13(3):243–249CrossRefGoogle Scholar
  7. 7.
    Wagner LV, Bagley AM, James MA (2007) Reasons for prosthetic rejection by children with unilateral congenital transverse forearm total deficiency. JPO J Prosthetics Orthot 19(2):51–54CrossRefGoogle Scholar
  8. 8.
    Walker JL, Coburn TR, Cottle W, Burke C, Talwalkar VR (2008) Recreational terminal devices for children with upper extremity amputations. J Pediatr Orthop 28(2):271–273CrossRefGoogle Scholar
  9. 9.
    Enabling The future – a global network of passionate volunteers using 3D printing to give the world a “Helping Hand”. http://enablingthefuture.org/. Accessed 05 Dec 2017
  10. 10.
    ten Kate J, Smit G, Breedveld P (2017) 3D-printed upper limb prostheses: a review. Disabil Rehabil Assist Technol 12(3):300–314CrossRefGoogle Scholar
  11. 11.
    Vasluian E, Van Wijk I, Dijkstra PU, Reinders-Messelink HA, Van Der Sluis CK (2015) Adaptive devices in young people with upper limb reduction deficiencies: use and satisfaction. J Rehabil Med 47(4):346–355CrossRefGoogle Scholar
  12. 12.
    Light CM, Chappell PH, Kyberd PJ (2002) Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 83(6):776–783CrossRefGoogle Scholar
  13. 13.
    Kyberd PJ et al (2009) Case studies to demonstrate the range of applications of the southampton hand assessment procedure. Br J Occup Ther 72(5):212–218CrossRefGoogle Scholar
  14. 14.
    Segil JL, Controzzi M, Weir RF, Cipriani C (2014) Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands. J Rehabil Res Dev 51(9):1439–1454CrossRefGoogle Scholar
  15. 15.
    Van Der Niet Otr O, Reinders-Messelink HA, Bongers RM, Bouwsema H, Van Der Sluis CK The i-LIMB hand and the DMC plus hand compared: a case report”Google Scholar
  16. 16.
    Bouwsema H, van der Sluis CK, Bongers RM (2014) Changes in performance over time while learning to use a myoelectric prosthesis. J Neuroeng Rehabil 11(1):16CrossRefGoogle Scholar
  17. 17.
    Kyberd PJ (2011) The influence of control format and hand design in single axis myoelectric hands: assessment of functionality of prosthetic hands using the Southampton Hand Assessment Procedure. Prosthet Orthot Int 35(3):285–293CrossRefGoogle Scholar
  18. 18.
    Bouwsema H, Kyberd PJ, Hill W, van der Sluis W, Bongers RM (2012) Determining skill level in myoelectric prosthesis use with multiple outcome measures 49(9):1331–1348Google Scholar
  19. 19.
    Ramirez, IA, Lusk CP, Dubey R, Jason Highsmith M, Maitland ME (2009) Crossed four-bar mechanism for improved prosthetic grasp. J Rehabil Res Dev 46(8):1011–1020Google Scholar
  20. 20.
    Dalley SA, Bennett DA, Goldfarb M (2012) Preliminary functional assessment of a multigrasp myoelectric prosthesis. In: Conference proceedings, annual international conference of the IEEE engineering in medicine and biology society, pp 4172–4175Google Scholar
  21. 21.
    Vasluian E, Bongers RM, Reinders-Messelink HA, Dijkstra PU, van der Sluis CK (2014) Preliminary study of the Southampton Hand Assessment Procedure for Children and its reliability. BMC Musculoskelet Disord 15(1):199CrossRefGoogle Scholar
  22. 22.
    Burgerhof JG, Vasluian E, Dijkstra PU, Bongers RM, van der Sluis CK (2017) The Southampton Hand Assessment Procedure revisited: a transparent linear scoring system, applied to data of experienced prosthetic usersGoogle Scholar
  23. 23.
    Quirijnen L (2017) KOONO: Een hulpmiddel voor kinderen met een aangeboren afwijking. Universiteit AntwerpenGoogle Scholar
  24. 24.
    Vaes K (2014) Product stigmaticity: understanding, measuring and managing product-related stigma. Delft Academic Press (VSSD Uitgeverij)Google Scholar
  25. 25.
    Vaes KRV, Stappers PJ, Standaert A, Desager K (2012) Contending stigma in product design: using insights from social psychology as a stepping stone for design strategies. In: Out Control, proceedings of the 8th international conference on design and emotion, London, Great Britain, 11–14 September 2012Google Scholar
  26. 26.
    James MA, Bagley AM, Brasington K, Lutz C, McConnell S, Molitor F (2006) Impact of prostheses on function and quality of life for children with unilateral congenital below-the-elbow deficiency. J Bone Jt Surg 88(11):2356–2365Google Scholar
  27. 27.
    Adolph K, Berger S (2006) Motor development. In: Kuhn D, Siegler R (eds) Handbook of child psychology: cognition, perception, and language, vol. 2, 6th edn. Wiley, New York, pp 161–213Google Scholar
  28. 28.
    Kosinski RJ, A literature review on reaction timeGoogle Scholar
  29. 29.
    Jongbloed-Pereboom M, Nijhuis-van der Sanden MWG, Steenbergen B (2013) Norm scores of the box and block test for children ages 3–10 years. Am J Occup Ther 67(3):312–318CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E. Haring
    • 1
  • K. Vaes
    • 1
  • S. Truijen
    • 2
  • M. Van Nuffel
    • 3
  • L. Quirijnen
    • 1
  • S. Verwulgen
    • 1
  1. 1.Department of Product Development, Faculty of Design SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health ScienceUniversity of AntwerpWilrijkBelgium
  3. 3.Hand Unit, Department of Orthopaedic SurgeryUniversity Hospitals LeuvenLeuvenBelgium

Personalised recommendations