Maximum Acceptable Work Time for the Upper Limbs Tasks and Lower Limbs Tasks. Workload Limits

  • Juan Carlos Velásquez VEmail author
  • Leonardo Briceño A
  • Diana Marcela Velasquez B
  • Silvio Juan Viña B
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 827)


Introduction: The physical workload is a major occupational risk factor for workers. Currently the used methods to assess physical dynamic workload evaluate working with the whole body and do not discriminate the load of the body segments. Objective: Determine the maximum acceptable dynamic work time when the work is involves the whole body, the upper limbs and the lower limbs. Methods: Oxygen consumption measurement by ergospirometry and heart rate were monitored in 30 workers exposed to various loads executed with the whole body, legs and upper limbs. Anaerobic threshold was determined by respiratory quotient. This was used to calculate the acceptable dynamic work time. Results: Statistically significant differences were found between acceptable dynamic work time for upper limbs and lower limbs. Negative exponential correlation was found between the workload time, oxygen consumption and heart rate, so we found that R > 0.9 in all cases. We propose six regression equations to determine the acceptable dynamic work time. Conclusions: The acceptable dynamic work time for lower limbs and whole body is similar. The acceptable dynamic work time for upper limbs was significantly lower than acceptable dynamic whole body work time. The relative heart rate seems to be the best indicator to measure acceptable dynamic work time.


Oxygen uptake Workload Acceptable work time Occupational health 


  1. 1.
    Astrand PO, Saltin B (1961) MaximaI oxygen uptake and heart rate in various types of muscular activity. J Appl Physiol 16(6):977–981CrossRefGoogle Scholar
  2. 2.
    Becker TJ, Morrill JM, Stamper EE (2008) Applications of work physiology science to capacity test prediction of full-time work eight hour work day. Rehab Profess 15(4):45–56Google Scholar
  3. 3.
    Malchaire J, Kampmann B, Havenith G, Mehnert P, Gebhardt HJ (2000) Criteria for estimating acceptable exposure times in hot working environments: a review. Int Arch Occup Environ Health 73:215–220CrossRefGoogle Scholar
  4. 4.
    Vallejo NG, Lopez GD, De Paz Fernandez JA (2005) Diferentes modelos de regresión para describir la relación entre VO2-FC para estimar el VO2 a diferente intensidad de esfuerzo. Cultura ciencia y deporte 3:131–135Google Scholar
  5. 5.
    Hart K (1998) Work standard assessment using: heart rate monitoring. IIE Sol 30(9):36–43Google Scholar
  6. 6.
    Lehmann G (1960) Fisiología Practica del Trabajo, Aguilar, MadridGoogle Scholar
  7. 7.
    Swain DP, Leutholtz BC (1997) Heart rate reserve is equivalent to % VO2Reserve, not to% VO2max. Med Sci Sports Exer 29(3):410–414CrossRefGoogle Scholar
  8. 8.
    Smolander J, Aminoff T, Korhonen I, Tervo M, Shen N, Korhonen O, Louhevaara V (1998) Heart rate and blood pressure responses to isometric exercise in young and older men. Eur J Appl Physiol Occup Physiol 77(5):439–444CrossRefGoogle Scholar
  9. 9.
    Wu H-C, Wang MJJ (2002) Relationship between maximum acceptable work time and physical workload. Ergonomics 45(4):280–289CrossRefGoogle Scholar
  10. 10.
    Asmussen E, Hemmingsen I (1958) Determination of maximum working capacity at different ages in work with the legs or with the arms. Scand J Clin Lab Inves 10(1):67–71CrossRefGoogle Scholar
  11. 11.
    Saha PN, Datta SR, Banerjee PK, Narayane GG (1979) An acceptable workload for Indian worker. Ergonomics 22(9):1059–1071CrossRefGoogle Scholar
  12. 12.
    Je Graves, Ml Pollock, Jf Carroll (1994) Exercise, age, and skeletal muscle function. South Med J 87(5):17–22CrossRefGoogle Scholar
  13. 13.
    Rodgers SH, Kenworth DA, Eggleton EM (1986) Ergonomic design for people at work. Van Nostrand Reinhold publisher, New York, p 2Google Scholar
  14. 14.
    Aminoff T, Smolander J, Korhonen O, Louhevaara V (1998) Prediction of acceptable physical workloads based on Responses to prolonged arm and leg exercise. Ergonomics 41:109–120CrossRefGoogle Scholar
  15. 15.
    Viña SY, Gregori E (1987) Ergonomía. C y E, La HabanaGoogle Scholar
  16. 16.
    Velásquez JC, Gutiérrez RC, Ospina N (2011) Cornejo. R. Natalia. Carga Física en Trabajadores de un cultivo florícola de Suesca, Cundinamarca. Momentos de Ciencia 8(1):64–72Google Scholar
  17. 17.
    Velásquez JC, Guzman N (2013) Efecto de una intervención tecnológica sobre la carga física durante el proceso de coquización en una empresa de Colombia. Momentos de Ciencia 10(2):117–123Google Scholar
  18. 18.
    Helena AL, Alvaro I (2005) Carga Física y tiempo máximo aceptable de trabajo en trabajadores de un supermercado en Cali Colombia. Rev Salud pública 2:145–156Google Scholar
  19. 19.
    Hausswirth C, Bigard AX, Le Chevalier JM (1997) The cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. J Sports Med 18(6):449–453Google Scholar
  20. 20.
    Maidorn K, Mellerowics H Der (1962) Sportarzt 11:355Google Scholar
  21. 21.
    Fc Hagerman, Ra Lawrence, Mc Mansfield (1988) A comparison of energy expenditure during rowing and cycling ergometry. Med Sci Sports Exer 20(5):479–488Google Scholar
  22. 22.
    Hoffman MD, Kassay KM, Zeni AI, Clifford PS (1996) Does the amount of exercising muscle alter the aerobic demand of dynamic exercise? Eur J Appl Physiol 74:541–547CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad del ValleCaliColombia
  2. 2.Universidad del RosarioBogotáColombia
  3. 3.Universidad LibreCaliColombia
  4. 4.Instituto Superior Politécnico José Antonio Echeverria, CUJAEHavanaCuba

Personalised recommendations