Advertisement

Cerebral Venous Regulation

  • Zhenni Guo
  • Hang Jin
  • Xin Sun
  • Lu-Sha Tong
  • John H. Zhang
  • Yi Yang
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

The overwhelming emphasis of the cerebrovascular regulation has been on understanding the artery system; few studies, however, have focused on the cerebral venous regulation, consequently, the modes and characteristics of cerebral venous regulation are largely unknown. Because 70–80% of the cerebral blood volume is located in the veins, the regulation of the cerebral venous system is as important as the cerebral artery system, especially in attenuating intracranial pressure, cerebral edema and hemorrhagic transformation. In this article, we will try to prove the presence of cerebral venous regulation from direct and indirect evidence. Furthermore, we analyzed the characteristics of the cerebral venous system from neurovascular coupling, cerebral autoregulation and cerebrovascular reactivity. From previous studies, we have come to the conclusion that the cerebral venous system may also have a vascular regulating function, which relates to the occurrence, development and prognosis of diseases. Like the cerebral arterial system, neurovascular coupling, cerebral autoregulation, and cerebrovascular reactivity can act as three evaluation indexes in cerebral venous regulation. The integrated cerebrovascular regulation, including cerebral arterial regulation and cerebral venous regulation, is a more reasonable method of evaluating cerebrovascular function.

Keywords

Cerebral veins Stroke Regulation 

Notes

Financial Support

This study was supported by the National Key R&D Program of China (2016YFC1301600) to Yi Yang.

References

  1. 1.
    McCaslin AF, Chen BR, Radosevich AJ, et al. In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling. J Cereb Blood Flow Metab. 2011;31(3):795–806.PubMedCrossRefGoogle Scholar
  2. 2.
    Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Tan CO, Taylor JA. Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol. 2014;99(1):3–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Guo ZN, Shao A, Tong LS, et al. The role of nitric oxide and sympathetic control in cerebral autoregulation in the setting of subarachnoid hemorrhage and traumatic brain injury. Mol Neurobiol. 2015;53:3606.PubMedCrossRefGoogle Scholar
  5. 5.
    Munoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling. Front Cell Neurosci. 2015;9:59.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Leybaert L. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab. 2005;25(1):2–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Newman EA. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 2003;26(10):536–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26(10):523–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78(1):53–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Golding EM, Marrelli SP, You J, et al. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke. 2002;33(3):661–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Busse R, Fleming I. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci. 2003;24(1):24–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Segal SS. Integration of blood flow control to skeletal muscle: key role of feed arteries. Acta Physiol Scand. 2000;168(4):511–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Somlyo AP, Wu X, Walker LA, et al. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol. 1999;134:201–34.PubMedGoogle Scholar
  17. 17.
    Salinet AS, Robinson TG, Panerai RB. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation. J Appl Physiol. 2015;118(2):170–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin WH, Hao Q, Rosengarten B, et al. Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. Eur J Neurol. 2011;18(5):731–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Koide M, Sukhotinsky I, Ayata C, et al. Subarachnoid hemorrhage, spreading depolarizations and impaired neurovascular coupling. Stroke Res Treat. 2013;2013:819340.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kotliar KE, Vilser W, Nagel E, et al. Retinal vessel reaction in response to chromatic flickering light. Graefes Arch Clin Exp Ophthalmol. 2004;242(5):377–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Huber L, Goense J, Kennerley AJ, et al. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T. NeuroImage. 2014;97:349–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Berwick J, Johnston D, Jones M, et al. Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur J Neurosci. 2005;22(7):1655–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Guo ZN, Liu J, Xing Y, et al. Dynamic cerebral autoregulation is heterogeneous in different subtypes of acute ischemic stroke. PLoS One. 2014;9(3):e93213.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Oeinck M, Neunhoeffer F, Buttler KJ, et al. Dynamic cerebral autoregulation in acute intracerebral hemorrhage. Stroke. 2013;44(10):2722–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Calviere L, Nasr N, Arnaud C, et al. Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment. Neurocrit Care. 2015;23:253.PubMedCrossRefGoogle Scholar
  26. 26.
    Budohoski KP, Czosnyka M, Kirkpatrick PJ, et al. Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage. Neurocrit Care. 2015;22(1):65–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidek HH, Auer LM, Kapp JP. The cerebral venous system. Neurosurgery. 1985;17(4):663–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Auer LM, Johansson BB, Lund S. Reaction of pial arteries and veins to sympathetic stimulation in the cat. Stroke. 1981;12(4):528–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Auer LM, Trummer UG, Johansson BB. Alpha-adrenoreceptor antagonists and pial vessel diameter during hypercapnia and hemorrhagic hypotension in the cat. Stroke. 1981;12(6):847–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Edvinsson L, Aubineau P, Owman C, et al. Sympathetic innervation of cerebral arteries: prejunctional supersensitivity to norepinephrine after sympathectomy or cocaine treatment. Stroke. 1975;6(5):525–30.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hamner JW, Tan CO, Lee K, et al. Sympathetic control of the cerebral vasculature in humans. Stroke. 2010;41(1):102–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Auer LM, Edvinsson L, Johansson BB. Effect of sympathetic nerve stimulation and adrenoceptor blockade on pial arterial and venous calibre and on intracranial pressure in the cat. Acta Physiol Scand. 1983;119(3):213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Edvinsson L, McCulloch J, Uddman R. Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses. J Physiol. 1982;325:161–73.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Auer LM, Johansson BB. Pial venous constriction during cervical sympathetic stimulation in the cat. Acta Physiol Scand. 1980;110(2):203–5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    McCulloch J, Edvinsson L, Watt P. Comparison of the effects of potassium and pH on the calibre of cerebral veins and arteries. Pflugers Arch. 1982;393(1):95–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Ainslie PN, Murrell C, Peebles K, et al. Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function. Exp Physiol. 2007;92(4):769–77.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    White RP, Vallance P, Markus HS. Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond). 2000;99(6):555–60.CrossRefGoogle Scholar
  38. 38.
    Preckel MP, Leftheriotis G, Ferber C, et al. Effect of nitric oxide blockade on the lower limit of the cortical cerebral autoregulation in pentobarbital-anaesthetized rats. Int J Microcirc Clin Exp. 1996;16(6):277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Carrera E, Lee LK, Giannopoulos S, et al. Cerebrovascular reactivity and cerebral autoregulation in normal subjects. J Neurol Sci. 2009;285(1-2):191–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Gommer ED, Staals J, van Oostenbrugge RJ, et al. Dynamic cerebral autoregulation and cerebrovascular reactivity: a comparative study in lacunar infarct patients. Physiol Meas. 2008;29(11):1293–303.PubMedCrossRefGoogle Scholar
  41. 41.
    Willie CK, MacLeod DB, Smith KJ, et al. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude. J Cereb Blood Flow Metab. 2015;35(5):873–81.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chen J, Liu J, Xu WH, et al. Impaired dynamic cerebral autoregulation and cerebrovascular reactivity in middle cerebral artery stenosis. PLoS One. 2014;9(2):e88232.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Murakami M, Fujioka S, Hirata Y, et al. Low-dose of statin treatment improves cerebrovascular reactivity in patients with ischemic stroke: single photon emission computed tomography analysis. J Stroke Cerebrovasc Dis. 2008;17(1):16–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Krainik A, Hund-Georgiadis M, Zysset S, et al. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke. 2005;36(6):1146–52.PubMedCrossRefGoogle Scholar
  45. 45.
    da Costa L, Houlden D, Rubenfeld G, et al. Impaired cerebrovascular reactivity in the early phase of subarachnoid hemorrhage in good clinical grade patients does not predict vasospasm. Acta Neurochir Suppl. 2015;120:249–53.PubMedGoogle Scholar
  46. 46.
    Frontera JA, Rundek T, Schmidt JM, et al. Cerebrovascular reactivity and vasospasm after subarachnoid hemorrhage: a pilot study. Neurology. 2006;66(5):727–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Meyer JS, Gotoh F, Takagi Y. Inhalation of oxygen and carbon dioxide gas. Effect on composition of cerebral venous blood. Arch Intern Med. 1967;119(1):4–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Klein KU, Glaser M, Reisch R, et al. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy. Anesth Analg. 2009;109(1):199–204.PubMedCrossRefGoogle Scholar
  49. 49.
    Bradley RD, Semple SJ, Spencer GT. Rate of change of carbon dioxide tension in arterial blood, jugular venous blood and cisternal cerebrospinal fluid on carbon dioxide administration. J Physiol. 1965;179(3):442–55.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ainslie PN, Lucas SJ, Fan JL, et al. Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol. 2012;113(7):1058–67.PubMedCrossRefGoogle Scholar
  51. 51.
    Jordan J, Shannon JR, Diedrich A, et al. Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension. 2000;36(3):383–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Azevedo E, Castro P, Santos R, et al. Autonomic dysfunction affects cerebral neurovascular coupling. Clin Auton Res. 2011;21(6):395–403.PubMedCrossRefGoogle Scholar
  53. 53.
    Phillips AA, Krassioukov AV, Zheng MM, et al. Neurovascular coupling of the posterior cerebral artery in spinal cord injury: a pilot study. Brain Sci. 2013;3(2):781–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Aguado F, Espinosa-Parrilla JF, Carmona MA, et al. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci. 2002;22(21):9430–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Hamner JW, Tan CO. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 2014;45(6):1771–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Petersen NH, Ortega-Gutierrez S, Reccius A, et al. Dynamic cerebral autoregulation is transiently impaired for one week after large-vessel acute ischemic stroke. Cerebrovasc Dis. 2015;39(2):144–50.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Reinhard M, Schwarzer G, Briel M, et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology. 2014;83(16):1424–31.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Muslumanoglu L, Aki S, Turkdogan D, et al. Involvement of sympathetic reflex activity in patients with acute and chronic stroke: a comparison with functional motor capacity. Arch Phys Med Rehabil. 2004;85(3):470–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Palomares SM, Cipolla MJ. Myogenic tone as a therapeutic target for ischemic stroke. Curr Vasc Pharmacol. 2014;12(6):788–800.PubMedCrossRefGoogle Scholar
  61. 61.
    Godinez-Rubi M, Rojas-Mayorquin AE, Ortuno-Sahagun D. Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxidative Med Cell Longev. 2013;2013:297357.CrossRefGoogle Scholar
  62. 62.
    Gelmers HJ. Calcium-channel blockers: effects on cerebral blood flow and potential uses for acute stroke. Am J Cardiol. 1985;55(3):144B–8B.PubMedCrossRefGoogle Scholar
  63. 63.
    van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.PubMedCrossRefGoogle Scholar
  64. 64.
    Otite F, Mink S, Tan CO, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke. 2014;45(3):677–82.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Koide M, Bonev AD, Nelson MT, et al. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A. 2012;109(21):E1387–95.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Koide M, Bonev AD, Nelson MT, et al. Subarachnoid blood converts neurally evoked vasodilation to vasoconstriction in rat brain cortex. Acta Neurochir Suppl. 2013;115:167–71.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Aries MJ, de Jong SF, van Dijk JM, et al. Observation of autoregulation indices during ventricular CSF drainage after aneurysmal subarachnoid hemorrhage: a pilot study. Neurocrit Care. 2015;23:347.PubMedCrossRefGoogle Scholar
  68. 68.
    Dankbaar JW, Rijsdijk M, van der Schaaf IC, et al. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009;51(12):813–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sabri M, Ai J, Knight B, et al. Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2011;31(1):190–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Moussouttas M, Lai EW, Huynh TT, et al. Association between acute sympathetic response, early onset vasospasm, and delayed vasospasm following spontaneous subarachnoid hemorrhage. J Clin Neurosci. 2014;21(2):256–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Banki NM, Kopelnik A, Dae MW, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112(21):3314–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Tso MK, Macdonald RL. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res. 2014;5(2):174–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Larsson J, Ekblom A, Henriksson K, et al. Concentration of substance P, neurokinin A, calcitonin gene-related peptide, neuropeptide Y and vasoactive intestinal polypeptide in synovial fluid from knee joints in patients suffering from rheumatoid arthritis. Scand J Rheumatol. 1991;20(5):326–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Juul R, Hara H, Gisvold SE, et al. Alterations in perivascular dilatory neuropeptides (CGRP, SP, VIP) in the external jugular vein and in the cerebrospinal fluid following subarachnoid haemorrhage in man. Acta Neurochir. 1995;132(1-3):32–41.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Juul R, Aakhus S, Bjornstad K, et al. Calcitonin gene-related peptide (human alpha-CGRP) counteracts vasoconstriction in human subarachnoid haemorrhage. Neurosci Lett. 1994;170(1):67–70.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Junger EC, Newell DW, Grant GA, et al. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kvandal P, Sheppard L, Landsverk SA, et al. Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals. J Clin Monit Comput. 2013;27(4):375–83.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Patel MB, McKenna JW, Alvarez JM, et al. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials. 2012;13:177.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Baguley IJ, Nicholls JL, Felmingham KL, et al. Dysautonomia after traumatic brain injury: a forgotten syndrome? J Neurol Neurosurg Psychiatry. 1999;67(1):39–43.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol. 2004;14(2):195–201.PubMedCrossRefGoogle Scholar
  81. 81.
    Mauler F, Hinz V, Horvath E, et al. Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma. Eur J Neurosci. 2004;20(7):1761–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Zhenni Guo
    • 1
    • 2
  • Hang Jin
    • 3
  • Xin Sun
    • 3
  • Lu-Sha Tong
    • 2
    • 4
  • John H. Zhang
    • 5
  • Yi Yang
    • 1
    • 3
  1. 1.Clinical Trial and Research Center for Stroke, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
  2. 2.Departments of Anesthesiology, Physiology and NeurosurgerySchool of Medicine, Loma Linda UniversityLoma LindaUSA
  3. 3.Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
  4. 4.Department of NeurologySchool of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhouChina
  5. 5.Department of Anesthesiology and PhysiologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations