Classification of Hyperspectral Data Using a Multi-Channel Convolutional Neural Network

  • Chen Chen
  • Jing-Jing Zhang
  • Chun-Hou Zheng
  • Qing Yan
  • Li-Na Xun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10956)


In recent years, deep learning is widely used for hyperspectral image (HSI) classification, among them, convolutional neural network (CNN) is most popular. In this paper, we propose a method for hyperspectral data classification by multi-channel convolutional neural network (MC-CNN). In this framework, one dimensional CNN (1D-CNN) is mainly used to extract the spectral feature of hyperspectral images, two dimension CNN (2D-CNN) is mainly used to extract the spatial feature of hyperspectral images, three-dimensional CNN (3D-CNN) is mainly used to extract part of the spatial and spectral information. And then these features are merged and pull into the full connection layer. At last, using neural network classifiers like logistic regression, we can eventually get class labels for each pixel. For comparison and validation, we compare the proposed MC-CNN algorithm with the other three deep learning algorithms. Experimental results show that our MC-CNN-based algorithm outperforms these state-of-the-art algorithms. Showcasing the MC-CNN framework has huge potential for accurate hyperspectral data classification.


Deep learning Hyperspectral image classification Convolutional neural network Full connection layer Logistic regression 



This work is supported by Anhui Provincial Natural Science Foundation (grant number 1608085MF 136), the National Science Foundation for China (Nos. 61602002 & 61572372).


  1. 1.
    Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43, 1351–1362 (2005)CrossRefGoogle Scholar
  2. 2.
    Samaniego, L., Bardossy, A., Schulz, K.: Supervised classification of remotely sensed imagery using a modified $k$-NN technique. IEEE Trans. Geosci. Remote Sens. 46, 2112–2125 (2008)CrossRefGoogle Scholar
  3. 3.
    Guo, B., Gunn, S.R., Damper, R.I., Nelson, J.B.: Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Trans. Image Process. 17, 622–629 (2008). A Publication of the IEEE Signal Processing SocietyMathSciNetCrossRefGoogle Scholar
  4. 4.
    Shafri, H.Z.M., Suhaili, A., Mansor, S.: The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. J. Comput. Sci. 3, 419–423 (2007)CrossRefGoogle Scholar
  5. 5.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798 (2013)CrossRefGoogle Scholar
  6. 6.
    Yu, D., Deng, L., Wang, S.: Learning in the deep-structured conditional random fields. In: NIPS Workshop on Deep Learning for Speech Recognition and Related Applications, pp. 1848–1852 (2009)Google Scholar
  7. 7.
    Mohamed, A.R., Sainath, T.N., Dahl, G., Ramabhadran, B., Hinton, G.E., Picheny, M.A.: Deep belief networks using discriminative features for phone recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5060–5063 (2011)Google Scholar
  8. 8.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 2012 (2013)Google Scholar
  9. 9.
    Schölkopf, B., Platt, J., Hofmann, T.: Greedy layer-wise training of deep networks. In: International Conference on Neural Information Processing Systems, pp. 153–160 (2007)Google Scholar
  10. 10.
    Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2094–2107 (2014)CrossRefGoogle Scholar
  11. 11.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geng, Y., Liang, R.Z., Li, W., Wang, J., Liang, G., Xu, C., Wang, J.Y.: Learning convolutional neural network to maximize Pos@Top performance measure (2016)Google Scholar
  13. 13.
    Geng, Y., et al.: A novel image tag completion method based on convolutional neural transformation. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 539–546. Springer, Cham (2017). Scholar
  14. 14.
    Zhang, G., et al.: Learning convolutional ranking-score function by query preference regularization. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 1–8. Springer, Cham (2017). Scholar
  15. 15.
    Ji, S., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 221–231 (2013)CrossRefGoogle Scholar
  16. 16.
    Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2016)CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 8, 438–447 (2017)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9, 67 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chen Chen
    • 1
  • Jing-Jing Zhang
    • 1
  • Chun-Hou Zheng
    • 2
  • Qing Yan
    • 1
  • Li-Na Xun
    • 1
  1. 1.College of Electrical Engineering and AutomationAnhui UniversityHefeiChina
  2. 2.College of Computer Science and TechnologyAnhui UniversityHefeiChina

Personalised recommendations