Advertisement

Ion–Molecule Reactions as a Possible Synthetic Route for the Formation of Prebiotic Molecules in Space

  • Riccardo Spezia
  • Yannick Jeanvoine
  • Debora Scuderi
Chapter

Abstract

Thanks to many astrophysical observations, the number of prebiotic molecules observed in space is growing daily. Organic molecules, which can be the first building blocks for appearance of life, were found in both interstellar medium and comets. As an example, several molecules with the peptide bond moiety were reported, like formamide and urea. The glycine detection has a long and controversial history, and it was recently reported on the comet 67P/Churyumov-Gerasimenko. A general question concerns how these molecules could be formed given the extreme conditions of space. Theoretical chemistry, combined in some cases with laboratory experiments, can help in quantifying the physical chemistry conditions which can allow their synthesis. Here, we summarize some studies on the particular case of ion–molecule collisions.

Notes

Acknowledgements

We thank ANR DynBioReact (Grant No. ANR-14-CE06-0029-01) and CNRS program INFINITI (project ASTROCOL) for support.

References

  1. Ahlswede B, Jug K (1999) J Comput Chem 20:563–571CrossRefGoogle Scholar
  2. Altwegg K, Balsiger H, Bar-Nun A, Berthelier J-J, Bieler A, Bochsler P, Briois C, Calmonte U, Combi MR, Cottin H, De Keyser J, Dhooghe F, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Haessig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou C-Y, Hunter Waite J, Wurz P (2016) Sci Adv 2:e1600285CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baer T, Hase WL (1996) Unimolecular Reaction Dynamics. Oxford University Press, OxfordGoogle Scholar
  4. Ball JA, Gottlieb CA, Lilley AE, Radford HE (1970) Astrophys J 162:L203–L210CrossRefGoogle Scholar
  5. Barone V, Latouche C, Skouteris D, Vazart F, Balucani N, Ceccarelli C, Lefloch B (2015) Mon Not R Astron Soc Lett 453:L31–L35CrossRefGoogle Scholar
  6. Barrientos C, Redondo P, Largo L, Rayón VM, Largo A (2012) Astrophys J 748:99CrossRefGoogle Scholar
  7. Blagojevic V, Petrie S, Bohme DK (2003) Mon Not R Astron Soc 339:L7–L11CrossRefGoogle Scholar
  8. Bockelée-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK, Gérard E, Germain B, Houde M, Mehringer D, Moreno R, Paubert G, Phillips TG, Rauer H (2000) Astronom. Astrophys. 353:1101–1114Google Scholar
  9. Brown RD, Crofts JG, Godfrey PD, Gardner FF, Robinson BJ, Whiteoak JB (1975) Astrophys J 197:L29–L31CrossRefGoogle Scholar
  10. Brünken S, Belloche A, Martn S, Verheyen L, Menten KM (2010) Astronom Astrophys 516:A109CrossRefGoogle Scholar
  11. Chapman S, Bunker DL (1975) J Chem Phys 62:2890–2899CrossRefGoogle Scholar
  12. Chen L, Woon DE (2011) J Phys Chem A 115:5166–5183CrossRefPubMedGoogle Scholar
  13. Cramer CJ (2006) Essential of Computational Chemistry. Wiley, Chichester, UKGoogle Scholar
  14. Cronin JR, Moore CB (1971) Science 172:1327–1329CrossRefPubMedGoogle Scholar
  15. Crovisier J, Bockelée-Morvan D, Biver N, Colom P, Despois D, Lis DC (2004) Astronom Astrophys 418:L35–L38CrossRefGoogle Scholar
  16. Danger G, Bossa J-B, de Marcellus P, Borget F, Duvernay F, Theulé P, Chiavassa T, d’Hendecourt L (2011) Astronom Astrophys 525:A30CrossRefGoogle Scholar
  17. de Marcellusa P, Meinertb C, Myrgorodska I, Nahonc L, Buhsed T, Le Sergeant d’Hendecourt L, Meierhenrich UJ (2015) Proc Natl Acad Sci USA 112:965–970CrossRefGoogle Scholar
  18. Duvernay F, Dufauret V, Danger G, Theulé P, Borget F, Chiavassa T (2010) Astronom Astrophys 523:A79CrossRefGoogle Scholar
  19. Engel MH, Macko SA (1997) Nature 389:265–268CrossRefPubMedGoogle Scholar
  20. Engel MH, Macko SA, Silfer JA (1990) Nature 348:47–49CrossRefPubMedGoogle Scholar
  21. Fathi P, Geppert WD, Ascenzi D (2016) Int J Mass Spectrom 411:1–13CrossRefGoogle Scholar
  22. Fayolle EC, Öberg KI, Jorgensen JK, Altwegg K, Calcutt H, Müller HSP, Rubin M, van der Wiel MHD, Bjerkeli P, Bourke TL, Coutens A, van Dishoeck EF, Drozdovskaya MN, Garrod, RT, Ligterink NFW, Persson MV, Wampfler SF (2017) The ROSINA team. Nat Astron 1:702–708Google Scholar
  23. Fourré I, Rosset L, Chevreau H, Ellinger Y (2016) 589:A18Google Scholar
  24. Godfrey PD, Brown RD, Robinson BJ, Sinclair MW (1973) Astrophys Lett 13:119Google Scholar
  25. Goesmann F, Rosenbauer H, Bredehöft, JH, Cabane, M, Ehrenfreund P, Gautier T, Giri C, Krüger, H, Le Roy L, MacDermott, AJ, McKenna-Lawlor S, Meierhenrich UJ, Munoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Science 349, aab0689Google Scholar
  26. Halfen DT, Ilyushin V, Ziurys LM (2011) Astrophys J 743:60CrossRefGoogle Scholar
  27. Hergst E (1985) Astrophys J 291:226–229CrossRefGoogle Scholar
  28. Hollis JM, Lovas FJ, Jewell PR (2000) Astrophys J 540:L107–L110CrossRefGoogle Scholar
  29. Jeanvoine Y, Largo A, Hase WL, Spezia R (2018) J Phys Chem A 122:869–877CrossRefPubMedGoogle Scholar
  30. Jones PA, Cunningham MR, Godfrey PD, Cragg DM (2007) Mon Not R Astron Soc 374:579–589CrossRefGoogle Scholar
  31. Kaiser RI (2002) Chem Rev 102:1309–1358CrossRefPubMedGoogle Scholar
  32. Koch DM, Toubin C, Peslherbe GH, Hynes JT (2008) J Phys Chem C 112:2972–2980CrossRefGoogle Scholar
  33. Kolesniková L, Daly AM, Alonso JL, Tercero B, Cernicharo J (2013) J Mol Spectrosc 289:13–20CrossRefGoogle Scholar
  34. Kuan Y-J, Charnley SB, Huang H-C, Tseng W-L, Kisiel Z (2003) Astrophys J 593:848–867CrossRefGoogle Scholar
  35. Larsson M, Geppert WD, Nyman G (2012) Rep Prog Phys 75:066901CrossRefPubMedGoogle Scholar
  36. López E, Ascenzi D, Tosi P, Bofill JM, de Andrés J, Albert M, Lucas JM, Aguilar A (2018) Phys Chem Chem Phys 20:6198–6210CrossRefPubMedGoogle Scholar
  37. Martin-Somer A, Martens J, Grzetic J, Hase WL, Oomens J, Spezia R (2018) J Phys Chem A 122:2612–2625CrossRefPubMedGoogle Scholar
  38. Martínez-Núnez E (2015) J Comput Chem 36:222–234CrossRefPubMedGoogle Scholar
  39. McGuire BA, Carroll PB, Loomis RA, Finneran IA, Jewell PR, Remijan AJ, Blake GA (2016) Science 352:1449–1552CrossRefPubMedGoogle Scholar
  40. McGuire BA, Burkhardt AM, Kalenskii S, Shingledecker CN, Remijan AJ, Herbst E, McCarthy MC (2018) Science 359:202–205CrossRefPubMedGoogle Scholar
  41. Mehringer DM, Snyder LE, Miao Y, Lovas F (1997) Astrophys J 480:L71–L74CrossRefGoogle Scholar
  42. Neill JL, Muckle MT, Zaleski DP, Steber AL, Pate BH, Lattanzi V, Spezzano S, McCarthy MC, Remijan AJ (2012) Astrophys J 755:143CrossRefGoogle Scholar
  43. Niether D, Afanasenkau D, Dhont JKG, Wiegand S (2016) Proc Natl Acad Sci USA 113:4272–4277CrossRefPubMedGoogle Scholar
  44. Peslherbe GH, Wang H, Hase WL (1999) Adv Chem Phys 105:171–202Google Scholar
  45. Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258–280CrossRefPubMedGoogle Scholar
  46. Pulliam RL, McGuire BA, Remijan AJ (2012) Astrophys J 751:1CrossRefGoogle Scholar
  47. Redondo P, Barrientos C, Largo A (2014a) Astrophys J 780:181CrossRefGoogle Scholar
  48. Redondo P, Barrientos C, Largo A (2014b) Astrophys J 793:32CrossRefGoogle Scholar
  49. Remijan AJ, Snyder LE, McGuire BA, Kuo H-L, Looney LW, Friedel DN, Golubiatnikov GY, Lovas FJ, Ilyushin VV, Alekseev EA, Dyubko SF, McCall BJ, Hollis JM (2014) Astrophys J 783:77Google Scholar
  50. Rimola A, Taquet V, Ugliengo P, Balucani N (2014) C Ceccarelli Astronom Astrophys 572:A70CrossRefGoogle Scholar
  51. Rubin RH, Swenson GW Jr, Benson RC, Tigelaar HL, Flygare WH (1971) Astrophys J 169:L39–L44CrossRefGoogle Scholar
  52. Saitta AM, Saija F (2014) Proc Natl Acad Sci USA 111:13768–13773CrossRefPubMedGoogle Scholar
  53. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Chem Soc Rev 41:5526–5565CrossRefPubMedGoogle Scholar
  54. Shannon RJ, Blitz MA, Goddard A, Heard DE (2013) Nature Chem 5:745–749Google Scholar
  55. Siro Brigiano F, Jeanvoine Y, Largo A, Spezia R (2018) Astronom Astrophys 610:A26CrossRefGoogle Scholar
  56. Skouteris D, Balucani N, Ceccarelli C, Vazart F, Puzzarini C, Barone V, Codella C, Lefloch B (2018) Astrophys J 854:135CrossRefGoogle Scholar
  57. Snow JL, Orlova G, Blagojevic V, Bohme DK (2007) J Am Chem Soc 129:9910–9917CrossRefPubMedGoogle Scholar
  58. Snyder LE, Buhl D (1972) Astrophys J 177:619–623CrossRefGoogle Scholar
  59. Snyder LE, Lovas FJ, Hollis JM, Friedel DN, Jewell PR, Remijan A, Ilyushin VV, Alekseev EA, Dyubko SF (2005) Astrophys J 619:914–930CrossRefGoogle Scholar
  60. Spezia R, Jeanvoine Y, Hase WL, Song K, Largo A (2016) Astrophys J 826:107CrossRefGoogle Scholar
  61. Su T, Chesnavich WJ (1982) J Chem Phys 76:5183–5185CrossRefGoogle Scholar
  62. Szabo A, Ostlund NS (1996) Modern Quantum Chemistry. Dover, New YorkGoogle Scholar
  63. Turner BE, Apponi AJ (2001) Astrophys J 561:L207–L210CrossRefGoogle Scholar
  64. Vasyunin AI, Herbst E (2013) Astrophys J 769:34CrossRefGoogle Scholar
  65. Verlet L (1967) Phys Rev 159:98CrossRefGoogle Scholar
  66. Zheng X, Cooks RG (2002) J Phys Chem A 106:9939–9946CrossRefGoogle Scholar
  67. Zuckerman B, Turner BE, Johnson DR, Clark FO, Lovas FJ, Fourikis N, Palmer P, Morris M, Lilley AE, Ball JA, Gottlieb CA, Penfield H (1975) Astrophys J 196:L99–L102CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Riccardo Spezia
    • 1
    • 2
  • Yannick Jeanvoine
    • 2
  • Debora Scuderi
    • 3
  1. 1.Laboratoire de Chimie Théorique, LCTCNRS, Sorbonne UniversitéParis Cedex 05France
  2. 2.LAMBECNRS, CEA, Université Evry, Université Paris-SaclayEvryFrance
  3. 3.Laboratoire de Chimie Physique, UMR8000CNRS, University of Paris-SudOrsayFrance

Personalised recommendations