Advertisement

Pmela and Tyrp1b Contribute to Melanophore Variation in Mexican Cavefish

  • Bethany A. Stahl
  • Connor R. Sears
  • Li Ma
  • Molly Perkins
  • Joshua B. Gross
Chapter

Abstract

Regressive evolution is a widespread phenomenon that affects every living organism, yet the mechanisms underlying trait loss remain largely unknown. Cave animals enable the study of degenerative disorders, owing to the frequent loss of eyes and pigmentation among lineages evolving in the subterranean habitat. Here, we utilize the blind Mexican cavefish, Astyanax mexicanus, to investigate regressive loss of pigmentation because “ancestral” surface-dwelling morphs allow direct comparisons with cave-dwelling forms. Two genes (Oca2-albinism and Mc1r-brown) have been linked to specific pigmentation alterations in several cavefish populations. Pigment cell (melanophore) number is a complex trait governed by multiple genes, and variation in this trait may contribute to pigmentation diversity in Astyanax. To uncover genes associated with this trait, we assembled a high-resolution linkage map and used automated phenotypic scoring to quantify melanophore number variation across seven body regions in a surface × Pachón cave F2 pedigree. QTL mapping yielded several markers strongly associated with melanophore number variation in the dorsal mid-lateral stripe area and superior head region, which anchor to regions of the Astyanax genome and the zebrafish genome. Within these syntenic regions, we identified two candidate genes, Tyrp1b and Pmela, with known roles in pigmentation based on gene ontology annotation. Mutant forms of these candidate genes in other organisms cause global and regional pigmentation variation, respectively. In Astyanax, these genes harbor coding sequence mutations and demonstrate differential expression in Pachón cavefish compared to surface morphs. In sum, this work identifies genes involved with complex aspects of Astyanax pigmentation and provides insight into genetic mechanisms governing regressive phenotypic change.

Keywords

Pigmentation Regressive evolution Astyanax Troglomorphy 

Notes

Funding

This study was funded by a grant from the National Science Foundation, Washington D.C., USA, to JBG (grant number DEB-1457630).

Ethical Statement All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Cincinnati (Protocol Number 10-01-21-01).

References

  1. Agarwal GA (1998) Vitiligo: an under-estimated problem. Fam Pract 15(Suppl 1):S19–23PubMedGoogle Scholar
  2. Berson JF, Harper DC, Tenza D, Raposo G, Marks MS (2001) Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 12:3451–3464CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bilandžija H, Ma L, Parkhurst A, Jeffery WR (2013) A potential benefit of albinism in Astyanax cavefish: Downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS ONE 8:e80823-14CrossRefGoogle Scholar
  4. Borowsky R (2008) Astyanax mexicanus, the blind Mexican cave fish: a model for studies in development and morphology. Cold Spring Harbor Protocols 2008:pdb.emo107Google Scholar
  5. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brunberg E, Anderson L, Cothran G, Sandberg K, Mikko S, Lindgren G (2006) A missense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genet 7:46CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carlson BM, Onusko SW, Gross JB (2015) A high-density linkage map for Astyanax mexicanus using genotyping-by-sequencing technology. G3: Genes Genomes Genet 5:241–251CrossRefGoogle Scholar
  8. Chiang PW, Fulton AB, Spector E, Hisama FM (2008) Synergistic interaction of the OCA2 and OCA3 genes in a family. Am J Med Genet Part A 146A:2427–2430CrossRefPubMedGoogle Scholar
  9. Clark LA, Wahl JM, Rees CA, Murphy KE (2006) Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci 103:1376–1381CrossRefPubMedGoogle Scholar
  10. Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge, 189 ppGoogle Scholar
  11. Dunn LC, Thigpen LW (1930) The silver mouse: a recessive color variation. J Hered 21:495–498CrossRefGoogle Scholar
  12. Erickson CA, Perris R (1993) The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest. Dev Biol 159:60–74CrossRefPubMedGoogle Scholar
  13. Eriksson N, Macpherson JM, Tung JY, Hon LS, Naughton B, Saxonov S, Avey L, Wojcicki A, Pe’er I, Mountain J (2010) Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet 6:e1000993CrossRefPubMedPubMedCentralGoogle Scholar
  14. Flanagan N, Healy E, Ray A, Philips S, Todd C, Jackson IJ, Birch-Machin MA, Rees JL (2000) Pleiotropic effects of the melanocortin 1 receptor (Mc1r) gene on human pigmentation. Hum Mol Genet 9:2531–2537CrossRefPubMedGoogle Scholar
  15. Forshew T, Khaliq S, Tee L, Smith U, Johnson CA, Mehdi SQ, Maker ER (2005) Identification of novel TYR and TYRP1 mutations in oculocutaneous albinism. Clin Genet 68:182–184CrossRefPubMedGoogle Scholar
  16. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2005) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6CrossRefPubMedCentralGoogle Scholar
  17. Frudakis T, Thomas M, Gaskin Z, Venkateswarlu K, Chandra KS, Ginjupalli S, Gunturi S, Natrajan S, Ponnuswamy VK, Ponnuswamy KN (2003) Sequences associated with human iris pigmentation. Genetics 165:2071–2083PubMedPubMedCentralGoogle Scholar
  18. Gross JB (2012a) Cave evolution. In: Encyclopedia of life sciences, eLS. WileyGoogle Scholar
  19. Gross JB (2012b) The complex origin of Astyanax cavefish. BMC Evol Biol 12:105–122CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gross JB, Wilkens H (2013) Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele. Heredity 111:122CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gross JB, Borowsky R, Tabin CJ (2009) A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet 5:e1000326-14CrossRefGoogle Scholar
  22. Gross JB, Protas ME, Conrad M, Scheid PE, Vidal O, Jeffery WR, Borowsky R, Tabin CJ (2008) Synteny and candidate gene prediction using an anchored linkage map of Astyanax mexicanus. Proc Natl Acad Sci 105:20106–20111CrossRefPubMedGoogle Scholar
  23. Gross JB, Krutzler AJ, Carlson BM (2014) Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics 196:1303–1319CrossRefPubMedPubMedCentralGoogle Scholar
  24. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324CrossRefPubMedGoogle Scholar
  25. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, Martin NG, Montgomery GW, Hayward NK, Thomas G, Hoover RN, Chanock S, Hunter DJ (2008) A genome-wide association study identified novel alleles associated with hair color and skin pigmentation. PLoS Genet 4:e1000074CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hellström AR, Watt B, Fard SS, Tenza D, Mannström P, Mannström K, Ekesten B, Ito S, Wakamatso K, Larsson J, Ulfendahl M, Kullander K, Raposo G, Kerje S, Hallböök F, Marks MS, Andersson L (2011) Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet 7:e1002285CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hocker T, Tsao H (2007) Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat 28:578–588CrossRefPubMedGoogle Scholar
  28. Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:222–234CrossRefPubMedGoogle Scholar
  29. Huang X, Saint-Jeannet JP (2004) Induction of the neural crest and the opportunities of life on the edge. Dev Biol 275:1–11CrossRefPubMedGoogle Scholar
  30. Hubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ (2010) Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet 26:231–239CrossRefPubMedGoogle Scholar
  31. Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C (2009) Silent (synonymous) SNPs: should we care about them? Single nucleotide polymorphisms. Humana Press, Totowa, NJ, pp 23–29CrossRefGoogle Scholar
  32. Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. Dev Biol 231:1–12CrossRefPubMedGoogle Scholar
  33. Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196CrossRefPubMedGoogle Scholar
  34. Jeffery WR (2006) Regressive evolution of pigmentation in the cavefish Astyanax. Isr J Ecol Evolut 52:405–422CrossRefGoogle Scholar
  35. Jeffery WR (2009) Evolution and development in the cavefish Astyanax. Curr Top Dev Biol 86:191–221CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jolly RD, Wills JL, Kenny JE, Cahill JI, Howe L (2011) Coat-colour dilution and hypotrichosis in Hereford crossbred calves. N Z Vet J 56:74–77CrossRefGoogle Scholar
  37. Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database 2011:bar049Google Scholar
  38. Kearsey MJ, Hyne V (1994) QTL analysis: a simple “marker-regression” approach. Theor Appl Genet 89:698–702CrossRefPubMedGoogle Scholar
  39. Kenny EE, Timpson NJ, Sikora M, Yee M-C, Moreno-Estrada A, Eng C, Huntsman S, González Burchard E, Stoneking M, Bustamante CD, Myles S (2012) Melanesian blond hair is caused by an amino acid change in TYRP1. Science 336:554–554CrossRefPubMedPubMedCentralGoogle Scholar
  40. Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE (2018) CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol (in press).   https://doi.org/10.1016/j.ydbio.2018.03.014
  41. Kobayashi T, Hearing VJ (2007) Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci 120:4261–4268CrossRefPubMedGoogle Scholar
  42. Kowalko JE, Rohner N, Linden TA, Rompani SB, Warren WC, Borowsky R, Tabin CJ, Jeffery WR, Yoshizawa M (2013) Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci 110:16933–16938CrossRefPubMedGoogle Scholar
  43. Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428PubMedPubMedCentralGoogle Scholar
  44. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kwon BS, Halaban R, Chintamaneni C (1989) Molecular basis of mouse Himalayan mutation. Biochem Biophys Res Commun 161:252–260CrossRefPubMedGoogle Scholar
  46. Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE (2009) On the origin and spread of an adaptive allele in deer mice. Science 325:1095–1098CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu JJ, Fisher DE (2010) Lighting a path to pigmentation: mechanisms of MITF induction by UV. Pigment Cell Melanoma Res 23:741–745CrossRefPubMedGoogle Scholar
  48. Lyons LA, Imes DL, Rah HC, Grahn RA (2005) Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus). Anim Genet 36:119–126CrossRefPubMedGoogle Scholar
  49. Manga P, Kromberg JGR, Box NF, Sturm RA, Jenkins T, Ramsay M (1997) Rufous oculocutaneous albinism in Southern African Blacks is caused by mutations in the TYRP1 gene. Am J Hum Genet 61:1095–1101CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ma L, Parkhurst A, Jeffery WR (2014) The role of a lens survival pathway including sox2 and aA-crystallin in the evolution of cavefish eye degeneration. EvoDevo 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ma L, Jeffery WR, Essner JJ, Kowalko JE (2015) Genome editing using TALENs in blind Mexican cavefish, Astynax mexicanus. PLoS One 10:e0119370CrossRefPubMedPubMedCentralGoogle Scholar
  52. McCauley DW, Hixon E, Jeffery WR (2004) Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evolut Dev 6:209–218CrossRefGoogle Scholar
  53. McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, Hinaux H, Jeffery WR, Keene A, Ma L, Minx P, Murphy D, O’Quinn KE, Rétaux S, Rohner N, Searle SMJ, Stahl BA, Tabin C, Volff J, Yoshizawa M, Warren WC (2014) The cavefish genome reveals candidate genes for eye loss. Nat Commun 5:5307CrossRefPubMedPubMedCentralGoogle Scholar
  54. Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. The biology of hypogean fishes. Springer Netherlands, Dordrecht, pp 87–96CrossRefGoogle Scholar
  55. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  56. Müller G, Ruppert S, Schmid E, Schütz G (1988) Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J 7:2723PubMedPubMedCentralCrossRefGoogle Scholar
  57. O’Quin KE, Yoshizawa M, Doshi P, Jeffery WR (2013) Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS ONE 8:e57281-11Google Scholar
  58. Oetting WS (2000) The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation. Pigment Cell Res 13:320–325CrossRefPubMedGoogle Scholar
  59. Oetting WS, Brilliant MH, King RA (1996) The clinical spectrum of albinism in humans. Mol Med Today 2:330–335CrossRefPubMedGoogle Scholar
  60. Protas ME, Conrad M, Gross JB, Tabin C, Borowsky R (2007) Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr Biol 17:452–454CrossRefPubMedPubMedCentralGoogle Scholar
  61. Protas ME, Patel NH (2008) Evolution of coloration patterns. Annu Rev Cell Dev Biol 24:425–446CrossRefPubMedGoogle Scholar
  62. Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, Zon LI, Borowsky R, Tabin CJ (2005) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111CrossRefPubMedGoogle Scholar
  63. Raposo G, Marks MS (2002) The dark side of lysosome-related organelles: Specialization of the endocytic pathway for melanosome biogenesis. Traffic 3:237–248CrossRefPubMedGoogle Scholar
  64. Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152:809–824CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rees JL (2003) Genetics of hair and skin color. Annu Rev Genet 37:67–90CrossRefPubMedGoogle Scholar
  66. Rooryck C, Roudaut C, Robine E, Müsebeck J, Arveiler B (2006) Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient. Pigment Cell Res 19:239–242CrossRefPubMedGoogle Scholar
  67. Schmidt-Küntzel A, Eizirik E, O’Brien SJ, Menotti-Raymond M (2005) Tyrosinase and Tyrosinase Related Protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J Hered 96:289–301CrossRefPubMedGoogle Scholar
  68. Schmutz SM, Berryere TG (2007) Genes affecting coat colour and pattern in domestic dogs: a review. Anim Genet 38:539–549CrossRefPubMedGoogle Scholar
  69. Schmutz SM, Dreger DL (2013) Interaction of MC1R and PMEL alleles on solid coat colors in Highland cattle. Anim Genet 44:9–13CrossRefPubMedGoogle Scholar
  70. Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R, Neuhauss SC (2005) A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 284:421–436CrossRefPubMedGoogle Scholar
  71. Solano F, Martínez Esparza M, Jimenez-Cervantes C, Hill SP, Lozano JA, García-Borrón JC (2000) New insights on the structure of the mouse silver locus and on the function of the silver protein. Pigment Cell Res 13:118–124CrossRefPubMedGoogle Scholar
  72. Spanakis E, Lamina P, Bennett DC (1992) Effects of the developmental colour mutations silver and recessive spotting on proliferation of diploid and immortal mouse melanocytes in culture. Development 114:675–680PubMedGoogle Scholar
  73. Stahl BA, Gross JB (2017) A comparative transcriptomic analysis of development in two Astyanax cavefish populations. J ExpZool Part B: Mol Dev Evolut 328:515–532CrossRefGoogle Scholar
  74. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Jakobsdottir M, Steinberg S, Gudjonsson SA, Palsson A, Thorleifsson G, Pálsson S, Sigurgeirsson B, Thorisdottir K, Ragnarsson R, Benediktsdottir KR, Aben KK, Vermeulen SH, Goldstein AM, Tucker MA, Kiemeney LA, Olafsson JH, Gulcher J, Kong A, Thorsteinsdottir U, Stefansson K (2008) Two newly identified genetic determinants of pigmentation in Europeans. Nat Genet 40:835–837CrossRefPubMedGoogle Scholar
  75. Theos AC, Truschel ST, Raposo G, Marks MS (2005) The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res 18:322–336CrossRefPubMedPubMedCentralGoogle Scholar
  76. Theos AC, Watt B, Harper DC, Janczura KJ, Theos SC, Herman KE, Marks MS (2013) The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell Melanoma Res 26:470–486CrossRefPubMedPubMedCentralGoogle Scholar
  77. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11:328–330CrossRefPubMedGoogle Scholar
  78. Wingert RA, Brownlie A, Galloway JL, Dooley K, Fraenkel P, Axe JL, Davidson AJ, Barut B, Noriega L, Sheng X, Zhou Y, Zon LI (2004) The chianti zebrafish mutant provides a model for erythroid-specific disruption of transferrin receptor 1. Development 131:6225–6235CrossRefPubMedGoogle Scholar
  79. Xu S, Hu Z (2010) Mapping quantitative trait loci using distorted markers. Int J Plant Genomics 2009:1–11Google Scholar
  80. Zhang MQ, Xu X, Luo SJ (2014) The genetics of brown coat color and white spotting in domestic yaks (Bos grunniens). Anim Genet 45:652–659CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bethany A. Stahl
    • 1
    • 2
  • Connor R. Sears
    • 1
  • Li Ma
    • 1
  • Molly Perkins
    • 1
  • Joshua B. Gross
    • 1
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUSA

Personalised recommendations