Advertisement

Steepest Descent Bat Algorithm for Solving Systems of Non-linear Equations

  • Gengyu Ge
  • Jiaxian Song
  • Juan Wang
  • Aijia Ouyang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10955)

Abstract

Bat algorithm (BA) is a kind of heuristic algorithm imitating the echolocation behavior of bats. In consideration of BA shortcomings such as that it could easily fall into traps like local optimum, low accuracy and premature convergence, a new algorithm is proposed by combining steepest descent (SD) algorithm and bat algorithm based on their respective advantages and disadvantages so as to achieve the goal of solving systems of non-linear equations effectively. The results of simulation experiments show that this proposed algorithm (SD-BA) can help improve the accuracy of problem solving and make the optimization results more accurate, and therefore, it is a very efficient and reliable algorithm for solving systems of non-linear equations.

Keywords

Bat Algorithm Steepest Descent algorithm Hybrid algorithm Systems of non-linear equations Searching 

Notes

Acknowledgements

The research was partially funded by the science and technology project of Guizhou ([2017]1207), the training program of high level innovative talents of Guizhou ([2017]3), the Guizhou province natural science foundation in China (KY[2016]018), the Science and Technology Research Foundation of Hunan Province (13C333).

References

  1. 1.
    Yang, X.S.: Nature-Inspired Meta Heuristic Algorithms. Luniver Press, Bristol (2010)Google Scholar
  2. 2.
    Xiao, H.H., Duan, Y.M.: Research and application of improved bat algorithm based on DE algorithm. Comput. Simul. 31(1), 272–301 (2014)Google Scholar
  3. 3.
    Yang, X.S.: Bat algorithm for multi-objective optimization. Int. J. Bio-Inspir. Comput. 3(5), 267–274 (2011)CrossRefGoogle Scholar
  4. 4.
    Yang, X.S., Hossein, G.A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)CrossRefGoogle Scholar
  5. 5.
    Komarasarmy, G., Wahi, A.: An optimized k-means clustering technique using bat algorithm. Eur. J. Sci. Res. 84(2), 263–273 (2012)Google Scholar
  6. 6.
    Sheng, X.H., Ye, C.M.: Application of bat algorithm to permutation flow-shop scheduling problem. Ind. Eng. J. 16(1), 119–124 (2013)Google Scholar
  7. 7.
    Huang, G.Q., Zhao, W.J., Lu, Q.Q.: Bat algorithm with global convergence for solving large-scale optimization problem. Appl. Res. Comput. 30(5), 1323–1328 (2013)Google Scholar
  8. 8.
    Wang, X., Wang, W., Wang, Y.: An adaptive bat algorithm. In: Huang, D.-S., Jo, K.-H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS (LNAI), vol. 7996, pp. 216–223. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39482-9_25CrossRefGoogle Scholar
  9. 9.
    Pan, T.S., Dao, T.K., Chu, S.C.: Hybrid particle swarm optimization with bat algorithm. Genet. Evol. Comput. 329, 37–47 (2015)Google Scholar
  10. 10.
    Luo, Q.F., Zhou, Y.Q., Xie, J., Ma, M.Z., Li, L.L.: Discrete bat algorithm for optimal problem of permutation flow shop scheduling. Sci. World J. 2014, 15 (2014)Google Scholar
  11. 11.
    Yang, N.C., Le, M.D.: Optimal design of passive power filters based on multi-objective bat algorithm and pare to front. Appl. Soft Comput. 35, 257–266 (2015)CrossRefGoogle Scholar
  12. 12.
    Yuvaraj, T., Ravi, K., Devabalaji, K.: DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng. J. 8(3), 391–403 (2017)CrossRefGoogle Scholar
  13. 13.
    Sun, W., Liu, M., Liang, Y.: Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm. Energies 8(7), 6585–6607 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhang, X.W., Xing, Z.D., Dong, J.M.: A hybrid genetic algorithm to seeking the optimum solution of a class of unconstrained optimization. J. Northwest Univ. (Nat. Sci. Edit.) 35(2), 130–132 (2005)zbMATHGoogle Scholar
  15. 15.
    Haario, H., Saksman, E.: Simulated annealing process in general state space. Adv. Appl. Probab. 23(4), 866–893 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhao, X.P.: Convergence on the steeped decent method using difference quotient. J. East China Inst. Chem. Technol. 18(6), 807–812 (1992)Google Scholar
  17. 17.
    Parlos, A.G., Fernandez, B., Atiya, A.F., Muthusami, J., Tsai, W.K.: An accelerated learning algorithm for multilayer perception networks. IEEE Trans. Neural Netw. 5(3), 493–497 (1994)CrossRefGoogle Scholar
  18. 18.
    Nguyen, N., Milanfar, P., Golub, G.: A computationally efficient super resolution image reconstruction algorithm. IEEE Trans. Image Process. 10(4), 573–583 (2001)CrossRefGoogle Scholar
  19. 19.
    Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process. 5(6), 987–995 (1996)CrossRefGoogle Scholar
  20. 20.
    Murota, K., Tanaka, K.: A steepest descent algorithm for M-convex functions on jump systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89A(5), 1160–1165 (2006)CrossRefGoogle Scholar
  21. 21.
    Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceeding of the 22nd International Conference on Machine Learning, pp. 89–96 (2005)Google Scholar
  22. 22.
    Yang, X.S.: A new meta-heuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization, vol. 284, pp. 65–74. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12538-6_6CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gengyu Ge
    • 1
  • Jiaxian Song
    • 1
  • Juan Wang
    • 1
  • Aijia Ouyang
    • 1
  1. 1.School of Information EngineeringZunyi Normal UniversityZunyiChina

Personalised recommendations