An Adaptive Segmentation Algorithm for Degraded Chinese Rubbing Image Binarization Based on Background Estimation

  • Han HuangEmail author
  • Zhi-Kai Huang
  • Yong-Li Ma
  • Ling-Ying Hou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10954)


Image Segmentation plays an important role in image processing and analysis. In order to preserve strokes of a Chinese character while enhancing character details for degraded historical document image, we propose an adaptive segmentation algorithm for degraded historical document image binarization based on background estimation for non-uniform illumination images. The novelty of the proposed method is that find an optimal background estimation based on Blind/Referenceless Image Spatial QUality Evaluator. The proposed method has four steps: (i) preprocess using median filtering; (ii) extraction of the red color components; (iii) a morphological operation in order to find an optimal background estimation; and (iv) segmented binary image using Otsu’s Thresholding. Experimental results demonstrate that it is capable of extracting more accurate segmentation of characters for degraded Chinese rubbing document image.


Top-Hat transform Blind/Referenceless Image Spatial QUality Evaluator Background estimation Mathematical morphology 



This work was supported by the National Natural Science Foundation of China (Grant No. 61472173), Natural Science Foundation of Jiangxi Province of China, No. 20161BAB202042, the grants from the Educational Commission of Jiangxi province of China, No. GJJ151134.


  1. 1.
    Khashman, A., Sekeroglu, B.: Document image binarisation using a supervised neural network. Int. J. Neural Syst. 18(05), 405–418 (2008)CrossRefGoogle Scholar
  2. 2.
    Huang, Z.K., Chau, K.W.: A new image thresholding method based on Gaussian mixture model. Appl. Math. Comput. 205(2), 899–907 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Solihin, Y., Leedham, C.G.: Integral ratio: a new class of global thresholding techniques for handwriting images. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 761–768 (1999)CrossRefGoogle Scholar
  5. 5.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  6. 6.
    Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 159–166. ACM (2010)Google Scholar
  7. 7.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–166 (2004)CrossRefGoogle Scholar
  8. 8.
    O’Gorman, L.: Binarization and multithresholding of document images using connectivity. CVGIP Graph. Models Image Process. 56(6), 494–506 (1994)CrossRefGoogle Scholar
  9. 9.
    Huang, D.Y., Wang, C.H.: Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recogn. Lett. 30(3), 275–284 (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, S., Wang, M.: Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67, 335–344 (2005)CrossRefGoogle Scholar
  11. 11.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recogn. 39(3), 317–327 (2006)CrossRefGoogle Scholar
  12. 12.
    Moghaddam, R.F., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recogn. 43(6), 2186–2198 (2010)CrossRefGoogle Scholar
  13. 13.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Huang, Z.K., Li, Z.H., Huang, H., et al.: Comparison of different image denoising algorithms for Chinese calligraphy images. Neurocomputing 188, 102–112 (2016)CrossRefGoogle Scholar
  16. 16.
    Lu, S.J., Tan, C.L.: Binarization of badly illuminated document images through shading estimation and compensation. In: International Conference on Document Analysis and Recognition, pp. 312–316. IEEE (2007)Google Scholar
  17. 17.
    Xiong, W., Xu, J., Xiong, Z., et al.: Degraded historical document image binarization using local features and support vector machine (SVM). Optik 164, 218–223 (2018)CrossRefGoogle Scholar
  18. 18.
    Su, B., Lu, S., Tan, C.: Binarization of historical document images using the local maximum and minimum. In: Proceedings of the 9th IAPR International Workshop DAS, pp. 159–166 (2010)Google Scholar
  19. 19.
    Nafchi, H.Z., Moghaddam, R.F., Cheriet, M.: Phase-based binarization of ancient document images: model and applications. IEEE Trans. Image Process. Publ. IEEE Sig. Process. Soc. 23(7), 2916–2930 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hadjadj, Z., Meziane, A., Cheriet, M., et al.: An active contour based method for image binarization: application to degraded historical document images. In: Isko-Maghreb: Concepts and Tools for Knowledge Management, pp. 1–7. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Han Huang
    • 1
    Email author
  • Zhi-Kai Huang
    • 2
  • Yong-Li Ma
    • 2
  • Ling-Ying Hou
    • 2
  1. 1.Department of Mechanical and Biomedical EngineeringCity University of Hong KongKowloon TongHong Kong
  2. 2.College of Mechanical and Electrical EngineeringNanchang Institute of TechnologyNanchangChina

Personalised recommendations