Advertisement

Image-Guided Robotic Radiosurgery for the Treatment of Drug-Refractory Epilepsy

  • Pantaleo Romanelli
  • Alfredo Conti
Chapter

Abstract

Stereotactic radiosurgery provides a safe nonresective option to treat medically refractory epilepsy. The radiosurgical ablation of an epileptic focus, especially when performed through frameless image-guided radiosurgery, is a thoroughly noninvasive treatment devoid of the risks of open surgical procedures. Radiosurgery can be offered to patients harboring neocortical, hippocampal, or diencephalic seizure foci not requiring invasive mapping. Disconnective procedures such as radiosurgical callosotomy can be performed as well. This chapter will review the state of the art of radiosurgery for epilepsy, with special emphasis placed on robotic image-guided frameless delivery.

Keywords

Image guidance Robotics Stereotactic radiosurgery Epilepsy Cyber knife 

References

  1. 1.
    Romanelli P, Anschel DJ. Radiosurgery for epilepsy. Lancet Neurol. 2006;5:613–20.CrossRefGoogle Scholar
  2. 2.
    Romanelli P, Striano P, Barbarisi M, Coppola G, Anschel DJ. Non-resective surgery and radiosurgery for treatment of drug-resistant epilepsy. Epilepsy Res. 2012;99:193–201.CrossRefGoogle Scholar
  3. 3.
    Regis J, Bartolomei F, Hayashi M, Chauvel P. Gamma knife surgery, a neuromodulation therapy in epilepsy surgery! Acta Neurochir Suppl. 2002;84:37–47.PubMedGoogle Scholar
  4. 4.
    Regis J, Carron R, Bartolomei F, Chauvel P. Seeking new paradigms in epilepsy: stereotactic radiosurgery. Clin Neurosurg. 2012;59:59–69.CrossRefGoogle Scholar
  5. 5.
    Regis J, Carron R, Park M. Is radiosurgery a neuromodulation therapy?: a 2009 Fabrikant award lecture. J Neuro-Oncol. 2010;98:155–62.CrossRefGoogle Scholar
  6. 6.
    Romanelli P, Bravin A. Synchrotron-generated microbeam radiosurgery: a novel experimental approach to modulate brain function. Neurol Res. 2011;33:825–31.CrossRefGoogle Scholar
  7. 7.
    Romanelli P, Fardone E, Battaglia G, Brauer-Krisch E, Prezado Y, Requardt H, et al. Synchrotron-generated microbeam sensorimotor cortex transections induce seizure control without disruption of neurological functions. PLoS One. 2013;8:e53549.CrossRefGoogle Scholar
  8. 8.
    Srikijvilaikul T, Najm I, Foldvary-Schaefer N, Lineweaver T, Suh JH, Bingaman WE. Failure of gamma knife radiosurgery for mesial temporal lobe epilepsy: report of five cases. Neurosurgery. 2004;54:1395–402. discussion, 402–4.CrossRefGoogle Scholar
  9. 9.
    Romanelli P, Schweikard A, Schlaefer A, Adler J. Computer aided robotic radiosurgery. Comput Aided Surg. 2006;11:161–74.CrossRefGoogle Scholar
  10. 10.
    Regis J, Bartolomei F, Metellus P, Rey M, Genton P, Dravet C, et al. Radiosurgery for trigeminal neuralgia and epilepsy. Neurosurg Clin N Am. 1999;10:359–77.CrossRefGoogle Scholar
  11. 11.
    Regis J, Bartolomei F, Rey M, Genton P, Dravet C, Semah F, et al. Gamma knife surgery for mesial temporal lobe epilepsy. Epilepsia. 1999;40:1551–6.CrossRefGoogle Scholar
  12. 12.
    Regis J, Bartolomei F, Rey M, Hayashi M, Chauvel P, Peragut JC. Gamma knife surgery for mesial temporal lobe epilepsy. J Neurosurg. 2000;93(Suppl 3):141–6.PubMedGoogle Scholar
  13. 13.
    Regis J, Rey M, Bartolomei F, Vladyka V, Liscak R, Schrottner O, et al. Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia. 2004;45:504–15.CrossRefGoogle Scholar
  14. 14.
    Regis J, Semah F, Bryan RN, Levrier O, Rey M, Samson Y, et al. Early and delayed MR and PET changes after selective temporomesial radiosurgery in mesial temporal lobe epilepsy. Am J Neuroradiol. 1999;20:213–6.PubMedGoogle Scholar
  15. 15.
    Chang EF, Quigg M, Oh MC, Dillon WP, Ward MM, Laxer KD, et al. Predictors of efficacy after stereotactic radiosurgery for medial temporal lobe epilepsy. Neurology. 2010;74:165–72.CrossRefGoogle Scholar
  16. 16.
    Schrottner O, Unger F, Eder HG, Feichtinger M, Pendl G. Gamma-knife radiosurgery of mesiotemporal tumour epilepsy observations and long-term results. Acta Neurochir Suppl. 2002;84:49–55.PubMedGoogle Scholar
  17. 17.
    Barbaro NM, Quigg M, Broshek DK, Ward MM, Lamborn KR, Laxer KD, et al. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memory. Ann Neurol. 2009;65:167–75.CrossRefGoogle Scholar
  18. 18.
    Quigg M, Broshek DK, Barbaro NM, Ward MM, Laxer KD, Yan G, et al. Neuropsychological outcomes after Gamma Knife radiosurgery for mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia. 2011;52:909–16.CrossRefGoogle Scholar
  19. 19.
    Rolston JD, Quigg M, Barbaro NM. Gamma knife radiosurgery for mesial temporal lobe epilepsy. Epilepsy Res Treat. 2011;2011:840616.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kurita H, Suzuki I, Shin M, Kawai K, Tago M, Momose T, et al. Successful radiosurgical treatment of lesional epilepsy of mesial temporal origin. Minim Invasive Neurosurg. 2001;44:43–6.CrossRefGoogle Scholar
  21. 21.
    Stefan H, Hummel C, Grabenbauer GG, Muller RG, Robeck S, Hofmann W, et al. Successful treatment of focal epilepsy by fractionated stereotactic radiotherapy. Eur Neurol. 1998;39:248–50.PubMedGoogle Scholar
  22. 22.
    Heers M, Rampp S, Stefan H, Urbach H, Elger CE, von Lehe M, et al. MEG-based identification of the epileptogenic zone in occult peri-insular epilepsy. Seizure. 2012;21:128–33.CrossRefGoogle Scholar
  23. 23.
    Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, Otsubo H. The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus. 2008;25:E16.CrossRefGoogle Scholar
  24. 24.
    Wu XT, Rampp S, Buchfelder M, Kuwert T, Blumcke I, Dorfler A, et al. Interictal magnetoencephalography used in magnetic resonance imaging-negative patients with epilepsy. Acta Neurol Scand. 2013;127:274–80.CrossRefGoogle Scholar
  25. 25.
    Stefan H, Lopes da Silva FH. Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol. 2013;4:8.CrossRefGoogle Scholar
  26. 26.
    Barcia JA, Barcia-Salorio JL, Lopez-Gomez L, Hernandez G. Stereotactic radiosurgery may be effective in the treatment of idiopathic epilepsy: report on the methods and results in a series of eleven cases. Stereotact Funct Neurosurg. 1994;63:271–9.CrossRefGoogle Scholar
  27. 27.
    Barcia-Salorio JL, Barcia JA, Hernandez G, Lopez-Gomez L. Radiosurgery of epilepsy. Long-term results. Acta Neurochir Suppl. 1994;62:111–3.CrossRefGoogle Scholar
  28. 28.
    Barcia-Salorio JL, Barcia JA, Roldan P, Hernandez G, Lopez-Gomez L. Radiosurgery of epilepsy. Acta Neurochir Suppl (Wien). 1993;58:195–7.Google Scholar
  29. 29.
    Pollock BE, Lunsford LD, Kondziolka D, Maitz A, Flickinger JC. Patient outcomes after stereotactic radiosurgery for "operable" arteriovenous malformations. Neurosurgery. 1994;35:1–7. discussion, 8.CrossRefGoogle Scholar
  30. 30.
    Hadjipanayis CG, Levy EI, Niranjan A, Firlik AD, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for motor cortex region arteriovenous malformations. Neurosurgery. 2001;48:70–6. discussion, 6–7.PubMedGoogle Scholar
  31. 31.
    Hoh BL, Ogilvy CS, Butler WE, Loeffler JS, Putman CM, Chapman PH. Multimodality treatment of nongalenic arteriovenous malformations in pediatric patients. Neurosurgery. 2000;47:346–57. discussion, 57–8.CrossRefGoogle Scholar
  32. 32.
    Hoh BL, Chapman PH, Loeffler JS, Carter BS, Ogilvy CS. Results of multimodality treatment for 141 patients with brain arteriovenous malformations and seizures: factors associated with seizure incidence and seizure outcomes. Neurosurgery. 2002;51:303–9. discussion, 9–11.CrossRefGoogle Scholar
  33. 33.
    Amin-Hanjani S, Ogilvy CS, Candia GJ, Lyons S, Chapman PH. Stereotactic radiosurgery for cavernous malformations: Kjellberg's experience with proton beam therapy in 98 cases at the Harvard Cyclotron. Neurosurgery. 1998;42:1229–36. discussion, 36–8.CrossRefGoogle Scholar
  34. 34.
    Regis J, Bartolomei F, Kida Y, Kobayashi T, Vladyka V, Liscak R, et al. Radiosurgery for epilepsy associated with cavernous malformation: retrospective study in 49 patients. Neurosurgery. 2000;47:1091–7.CrossRefGoogle Scholar
  35. 35.
    Romanelli P, Verdecchia M, Rodas R, Seri S, Curatolo P. Epilepsy surgery for tuberous sclerosis. Pediatr Neurol. 2004;31:239–47.CrossRefGoogle Scholar
  36. 36.
    Calisto A, Dorfmuller G, Fohlen M, Bulteau C, Conti A, Delalande O. Endoscopic disconnection of hypothalamic hamartomas: safety and feasibility of robot-assisted, thulium laser-based procedures. J Neurosurg Pediatr. 2014;14:563–72.CrossRefGoogle Scholar
  37. 37.
    Arita K, Kurisu K, Kiura Y, Lida K, Otsubo H. Hypothalamic hamartoma. Neurol Med Chir (Tokyo). 2005;45:221–31.CrossRefGoogle Scholar
  38. 38.
    Regis J, Scavarda D, Tamura M, Villeneuve N, Bartolomei F, Brue T, et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Semin Pediatr Neurol. 2007;14:73–9.CrossRefGoogle Scholar
  39. 39.
    Romanelli P, Muacevic A, Striano S. Radiosurgery for hypothalamic hamartomas. Neurosurg Focus. 2008;24:E9.CrossRefGoogle Scholar
  40. 40.
    Selch MT, Gorgulho A, Mattozo C, Solberg TD, Cabatan-Awang C, Desalles AA. Linear accelerator stereotactic radiosurgery for the treatment of gelastic seizures due to hypothalamic hamartoma. Minim Invasive Neurosurg. 2005;48:310–4.CrossRefGoogle Scholar
  41. 41.
    Unger F, Schrottner O, Feichtinger M, Bone G, Haselsberger K, Sutter B. Stereotactic radiosurgery for hypothalamic hamartomas. Acta Neurochir Suppl. 2002;84:57–63.PubMedGoogle Scholar
  42. 42.
    Englot DJ, Birk H, Chang EF. Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurg Rev. 2017;40:181–94.CrossRefGoogle Scholar
  43. 43.
    Moreno-Jimenez S, San-Juan D, Larraga-Gutierrez JM, Celis MA, Alonso-Vanegas MA, Anschel DJ. Diffusion tensor imaging in radiosurgical callosotomy. Seizure. 2012;21:473–7.CrossRefGoogle Scholar
  44. 44.
    Feichtinger M, Schrottner O, Eder H, Holthausen H, Pieper T, Unger F, et al. Efficacy and safety of radiosurgical callosotomy: a retrospective analysis. Epilepsia. 2006;47:1184–91.CrossRefGoogle Scholar
  45. 45.
    Devinsky O, Romanelli P, Orbach D, Pacia S, Doyle W. Surgical treatment of multifocal epilepsy involving eloquent cortex. Epilepsia. 2003;44:718–23.CrossRefGoogle Scholar
  46. 46.
    Morrell F, Whisler WW, Bleck TP. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg. 1989;70:231–9.CrossRefGoogle Scholar
  47. 47.
    Morrell F, Whisler WW, Smith MC, Hoeppner TJ, de Toledo-Morrell L, Pierre-Louis SJ, et al. Landau-Kleffner syndrome. Treatment with subpial intracortical transection. Brain. 1995;118:1529–46.CrossRefGoogle Scholar
  48. 48.
    Anschel DJ, Bravin A, Romanelli P. Microbeam radiosurgery using synchrotron-generated submillimetric beams: a new tool for the treatment of brain disorders. Neurosurg Rev. 2010;34:1330–42.Google Scholar
  49. 49.
    Romanelli P, Fardone E, Bucci D, Battaglia G, Brauer-Krisch E, Requardt H, et al. Microradiosurgical cortical transections generated by synchrotron radiation. Phys Med. 2015;31:642–6.CrossRefGoogle Scholar
  50. 50.
    Fardone E, Bravin A, Conti A, Brauer-Krisch E, Requardt H, Bucci D, et al. Rat sensorimotor cortex tolerance to parallel transections induced by synchrotron-generated X-ray microbeams. Sci Rep. 2017;7(1):14290.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Pantaleo Romanelli
    • 1
  • Alfredo Conti
    • 2
  1. 1.Cyberknife Center, CDIMilanItaly
  2. 2.Department of NeurosurgeryCyberKnife CenterMessinaItaly

Personalised recommendations