The Magnetotactic Bacteria of the Churince Lagoon at Cuatro Cienegas Basin

  • Icoquih Zapata-PeñascoEmail author
  • Santiago Bautista-López
  • Valeria Souza
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)


Magnetotactic bacteria (MTB) are prokaryotes whose movements are directed by the Earth’s geomagnetic field. The MTB are diverse in morphology, phylogeny, and physiology. They have unique cellular structures called magnetosomes, which are magnetic mineral crystals (iron) enveloped by a phospholipid bilayer membrane. These magnetosomes confer the ability of bacteria to have magnetotaxis. In this chapter, we will present some findings about the MTB inhabiting Churince Lagoon at Cuatro Cienegas Basin (CCB), such as Desulfovibrio magneticus, Magnetospirillum, Magnetospira, Magnetococcus, and Magnetovibrio. In a phylogenetic analysis, sequences of genes that encode the magnetosomes from CCB have similarities with those found in marine sediments with volcanic activity. These observations not only conform with other studies that have shown marine ancestry in microbes from CCB but also reaffirms the magmatic influences on the deep aquifer under the Sierra San Marcos and Pinos. Thus, water overexploitation for intensive agriculture in this oasis especially endangers the processes of the iron-sulfur cycle. This biogeochemical cycle is dependent on the deep aquifer and its sediments, which likely function as a depository of ancient anaerobic microbes such as the MTB.


Magnetotactic bacteria Sulfur/Iron cycle Phylogenetic analysis Marine ancestry Churince Lagoon 


  1. Arakaki A, Shibusawa M, Hosokawa M et al (2010) Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification. Appl Environ Microbiol 76:1480–1485. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bazylinski DA (1996) Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chem Geol 132:191–198. CrossRefGoogle Scholar
  3. Bazylinski DA, Williams TJ, Lefévre CT et al (2013a) Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol 63:801–808. CrossRefPubMedGoogle Scholar
  4. Bazylinski DA, Lefèvre CT, Schüler D (2013b) Magnetotactic bacteria. In: Rosenberg E, EF DL, Lory S et al (eds) The prokaryotes. Springer, Berlin, pp 453–494CrossRefGoogle Scholar
  5. Binhi VN, Prato FS (2017) Biological effects of the hypomagnetic field: an analytical review of experiments and theories. PLoS One 12(6):e0179340. CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Anda V, Zapata-Peñasco I, Poot-Hernandez AC et al (2017) MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unravelling the sulfur cycle. GigaScience 6:1–17. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Des Marais DJ (2003) Biogeochemistry of hypersaline Microbial mats illustrates the dynamics of the modern microbial ecosystems and early evolution of the biosphere. Biol Bull 204:160–167. CrossRefPubMedGoogle Scholar
  8. Dodd MS, Papineau D, Grenne T et al (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64. CrossRefPubMedGoogle Scholar
  9. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ginet N, Pardoux R, Adryanczyk G et al (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6(6):e21442. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jousset A, Bienhold C, Chatzinotas A et al (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–862. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kawaguchi R, Burgess JG, Sakaguchi T et al (1995) Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium RS-1, demonstrates its membership of the delta-Proteobacteria. FEMS Microbiol Lett 126:277–282. CrossRefPubMedGoogle Scholar
  13. Komeili A, Li Z, Newman DK et al (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245. CrossRefPubMedGoogle Scholar
  14. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21(12):647–654. CrossRefPubMedGoogle Scholar
  15. Kozyaeva VV, Grouzdev DS, Dziuba MV et al (2017) Diversity of magnetotactic bacteria of the Moskva River. Microbiology 86:106–112. CrossRefGoogle Scholar
  16. Lee ZM-P, Poret-Peterson AT, Siefert JL et al (2017) Nutrient stoichiometry shapes microbial community structure in an evaporitic shallow pond. Front Microbiol 8:949. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lefèvre DA, Bazylinski A (2013) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77:497–526. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lefévre CT, Trubitsyn D, Abreu F et al (2013) Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 15:2267–2274. CrossRefPubMedGoogle Scholar
  19. Lin W, Wang Y, Gorby Y et al (2013) Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci Rep 3:1643. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu J, Zhang W, Li X et al (2017) Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana volcanic arc. Sci Rep 7:17964. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lohße A, Ullrich S, Katzmann E et al (2011) Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS One 6(10):e25561. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mathuriya AS (2016) Magnetotactic bacteria: nanodrivers of the future. Crit Rev Biotechnol 36:788–802. CrossRefPubMedGoogle Scholar
  23. Matsunaga T, Sakaguchi T, Tadakoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651. CrossRefGoogle Scholar
  24. Moreno-Letelier A, Olmedo G, Eguiarte LE, et al (2011) Parallel evolution and horizontal gene transfer of the pst operon in Firmicutes from oligotrophic environments. Int J Evol Biol. Article ID 781642. CrossRefGoogle Scholar
  25. Moreno-Letelier A, Olmedo-Alvarez G, Eguiarte LE et al (2012) Divergence and phylogeny of Firmicutes from the Cuatro Ciénegas Basin, Mexico: a window to an ancient ocean. Astrobiology 12:674–684. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nakamura C, Kikuchi T, Burgess JG et al (1995) An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270:28392–28396. CrossRefPubMedGoogle Scholar
  27. Nakazawa H, Arakaki A, Narita-Yamada S et al (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome- pecific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188. CrossRefPubMedGoogle Scholar
  29. Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102. CrossRefPubMedGoogle Scholar
  30. Olson KR, Straub KD (2016) The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology 31:60–72. CrossRefPubMedGoogle Scholar
  31. Relman DA (1993) Universal bacterial 16S rRNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. ASM Press, Washington, DC, pp 489–495Google Scholar
  32. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH Front. J Geol Soc 154:377–402. CrossRefGoogle Scholar
  33. Schreiber L, Holler T, Knittel K et al (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12(8):2327–2340. CrossRefPubMedGoogle Scholar
  34. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120. CrossRefPubMedGoogle Scholar
  35. Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci 103(17):6565–6570. CrossRefPubMedGoogle Scholar
  36. Souza V, Siefert JL, Escalante AE et al (2012) The Cuatro Ciénegas Basin in Coahuila, Mexico: an Astrobiological Precambrian Park. Astrobiology 12:641–647. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tanaka M, Okamura Y, Arakaki A et al (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6:5234–5247. CrossRefPubMedGoogle Scholar
  38. Tanaka M, Arakaki A, Staniland SS et al (2010) Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Appl Environ Microbiol 76:5526–5532. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tarbuck EJ, Lutgens FK, Tasa D (2005) Earth: an introduction to Physical Geology, 8th edn. Pearson Education, Inc/Prentice Hall, Upper Saddle RiverGoogle Scholar
  40. Uebe R, Schüler D (2016) Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 14:621–637. CrossRefPubMedGoogle Scholar
  41. Wächtershäuser G (2008) Iron-Sulfur world. In: Wiley encyclopedia of chemical biology, pp 1–8.
  42. Yooseph S, Sutton G, Rusch DB et al (2007) The Sorcerer II Global Ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zeytuni N, Ozyamak E, Ben-Harush K et al (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci 108:E480–E487. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Icoquih Zapata-Peñasco
    • 1
    Email author
  • Santiago Bautista-López
    • 1
  • Valeria Souza
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico

Personalised recommendations