Toward a Comprehensive Understanding of Environmental Perturbations in Microbial Mats from the Cuatro Cienegas Basin by Network Inference

  • Valerie De Anda
  • Icoquih Zapata-Peñasco
  • Luis E. Eguiarte
  • Valeria SouzaEmail author
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)


The Cuatro Cienegas Basin (CCB) encompasses hundreds of aquatic systems that harbor diverse microbialites with different community structure composition and with the highest level of endemism in North America. Thus, CCB represents a desert oasis of high biodiversity. Despite the great importance of this unique site, increasing demand on water for agricultural development (forage and feed livestock) was first manifested with extraction of groundwater in 2011, starting the drying process of aquifers and desertification of the Churince Lagoon. As consequence, water levels have been drastically fluctuating, affecting all ecosystem functions. This chapter reviews a recent network-based approach used to understand how the anthropogenic disturbances affect one of the most resistant microbial communities since the Archean, microbial mats.


Network-Inference Aquatic systems Biodiversity Water Overexploitation Microbial mats 


  1. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. PNAS 105(Suppl 1):11512–11519CrossRefGoogle Scholar
  2. Bascompte J (2010) Structure and dynamics of ecological networks. Science 329:765–766CrossRefGoogle Scholar
  3. Bascompte J, Stouffer DB (2009) The assembly and disassembly of ecological networks. Philos Trans R Soc Lond B Biol Sci 364:1781–1787. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bascompte J, Jordano P, Melián CJ et al (2003) The nested assembly of plant-animal mutualistic networks. PNAS 100:9383–9387. CrossRefPubMedGoogle Scholar
  5. Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. FEMS Microbiol Ecol 90:335–350. CrossRefPubMedGoogle Scholar
  6. Carson EW, Souza V, Espinosa-Pérez H et al (2015) Mitochondrial DNA diversity and phylogeography of Lucania interioris inform biodiversity conservation in the Cuatro Ciénegas Basin, México. West N Am Nat 75:200–208. CrossRefGoogle Scholar
  7. Cerritos R, Eguiarte LE, Avitia M et al (2011) Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Ciénegas, Coahuila, México. Antonie Van Leeuwenhoek 99:303–318. CrossRefPubMedGoogle Scholar
  8. Chapin FS, Sala OE, Burke IC et al (1998) Ecosystem consequences of changing biodiversity. Bioscience 48:45–52. CrossRefGoogle Scholar
  9. Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167CrossRefGoogle Scholar
  10. Elser JJ, Watts J, Schampel JH et al (2006) Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecol Lett 9:292–300. CrossRefGoogle Scholar
  11. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. CrossRefPubMedGoogle Scholar
  12. Faust K, Lahti L, Gonze D et al (2015) Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol 25:56–66. CrossRefPubMedGoogle Scholar
  13. Foti M, Ma S, Sorokin DY et al (2006) Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiol Ecol 56:95–101. CrossRefPubMedGoogle Scholar
  14. Freilich S, Zarecki R, Eilam O et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:587–589. CrossRefGoogle Scholar
  15. Graf J (2014) The family Rikenellaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: other major lineages of bacteria and the archaea. Springer, Berlin, Heidelberg, pp 857–859Google Scholar
  16. Grilli J, Rogers T, Allesina S (2016) Modularity and stability in ecological communities. Nat Commun 7:12031. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guimarães PR, Rico-Gray V, dos Reis SF, Thompson JN (2006) Asymmetries in specialization in ant-plant mutualistic networks. Proc Biol Sci 273:2041–2047. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Guimarães PR, Pires MM, Jordano P et al (2017) Indirect effects drive coevolution in mutualistic networks. Nature 550:511–514. CrossRefPubMedGoogle Scholar
  19. Hernández A, Espinosa-Pérez HS, Souza V (2017) Trophic analysis of the fish community in the Ciénega Churince, Cuatro Ciénegas, Coahuila. PeerJ 5:e3637. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174. CrossRefPubMedGoogle Scholar
  21. Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230. CrossRefPubMedGoogle Scholar
  22. Konopka AE, Lindemann S, Fredrickson JK (2015) Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J 9:1488–1495. CrossRefPubMedGoogle Scholar
  23. Minckley W (1969) Environments of the Bolson of Cuatro Cienegas, Coahuila, Mexico. Sci Ser 2:1–65Google Scholar
  24. Minckley TA, Jackson ST (2007) Ecological stability in a changing world? Reassessment of the palaeoenvironmental history of Cuatrociénegas, Mexico. J Biogeogr 35:188–190. CrossRefGoogle Scholar
  25. Montiel-González C, Tapia-Torres Y, Souza V et al (2017) The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert. PeerJ 5:e4007. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Newman MEJ (2006) Modularity and community structure in networks. PNAS 103:8577–8582. CrossRefPubMedGoogle Scholar
  27. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:26113. pmid:14995526CrossRefGoogle Scholar
  28. Oren A (1988) Anaerobic degradation of organic compounds at high salt concentrations. Antonie Van Leeuwenhoek 54:267–277. CrossRefPubMedGoogle Scholar
  29. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:1–13. CrossRefGoogle Scholar
  30. Pajares S, Bonilla-Rosso G, Travisano M et al (2012) Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress. Microb Ecol 64:346–358. CrossRefPubMedGoogle Scholar
  31. Peralta AL, Ludmer S, Matthews JW, Kent AD (2014) Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands. Ecol Eng 73:246–253. CrossRefGoogle Scholar
  32. Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA et al (2013) Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Microbiol 63:86–92. CrossRefPubMedGoogle Scholar
  33. Prieto-Barajas CM, Valencia-Cantero E, Santoyo G (2017) Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron J Biotechnol 31:48–56. CrossRefGoogle Scholar
  34. Rohr RP, Saavedra S, Bascompte J (2014) On the structural stability of mutualistic systems. Science 345:1253497. CrossRefPubMedGoogle Scholar
  35. Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:1–19. CrossRefGoogle Scholar
  36. Shaw GTW, Pao YY, Wang D (2016) MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles. BMC Bioinformatics 17:488. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Song HS, Cannon W, Beliaev A, Konopka A (2014) Mathematical modeling of microbial community dynamics: a methodological review. Processes 2:711–752. CrossRefGoogle Scholar
  38. Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:1–16. CrossRefGoogle Scholar
  39. Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. PNAS 103:6565–6570. CrossRefPubMedGoogle Scholar
  40. Souza V, Falcón LI, Elser JJ et al (2007) Protecting a window into the ancient earth: towards a Precambrian Park at Cuatro Cienegas, Mexico. The Citizen’s page. Evol Ecol Res. Available online at
  41. Souza V, Siefert JL, Escalante AE et al (2012) The Cuatro Ciénegas Basin in Coahuila, Mexico: an astrobiological Precambrian Park. Astrobiology 12:641–647. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stein RR, Bucci V, Toussaint NC et al (2013) Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol 9:31–36. CrossRefGoogle Scholar
  43. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474. CrossRefGoogle Scholar
  44. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci 101:10854–10861. CrossRefPubMedGoogle Scholar
  45. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632. CrossRefPubMedGoogle Scholar
  46. van Gemerden H (1993) Microbial mats: A joint venture. Mar Geol 113:3–25. CrossRefGoogle Scholar
  47. Weng FCH, Shaw GTW, Weng CY et al (2017) Inferring microbial interactions in the gut of the Hong Kong whipping frog (Polypedates megacephalus) and a validation using probiotics. Front Microbiol 8:1–11. CrossRefGoogle Scholar
  48. Wolaver BD, Diehl TM (2010) Control of regional structural styles and faulting on Northeast Mexico spring distribution. Environ Earth Sci 62:1535–1549. CrossRefGoogle Scholar
  49. Wolaver BD, Crossey LJ, Karlstrom KE et al (2012) Identifying origins of and pathways for spring waters in a semiarid basin using He, Sr, and C isotopes: Cuatrocienegas Basin, Mexico. Geosphere 9:113–125. CrossRefGoogle Scholar
  50. Xiao Y, Angulo MT, Friedman J et al (2017) Mapping the ecological networks of microbial communities. Nat Commun 8:2042. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Valerie De Anda
    • 1
  • Icoquih Zapata-Peñasco
    • 2
  • Luis E. Eguiarte
    • 1
  • Valeria Souza
    • 1
    Email author
  1. 1.Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCoyoacanMexico
  2. 2.Instituto Mexicano del PetróleoMexico CityMexico

Personalised recommendations