Advertisement

The Effect of Nutrient Availability on the Ecological Role of Filamentous Microfungi: Lessons from Elemental Stoichiometry

  • Yunuen Tapia-Torres
  • Patricia Vélez
  • Felipe García-Oliva
  • Luis E. Eguiarte
  • Valeria Souza
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

Ecological stoichiometry theory helps us to better understand trophic interactions by analyzing the imbalances in the relative supplies of key elements (carbon, nitrogen, and phosphorus) between organisms and their resources. However, the mechanisms that control elemental stoichiometry in different taxonomic groups and the effects of nutrient supply imbalances are not yet clear. Aquatic microfungi are an ecological group of microorganisms ranging from those adapted to complete their life cycles in aquatic habitats to those that occurring in water fortuitously. Aquatic fungi are important regulators of plant productivity, community dynamics, and diversity in nutrient-poor and extreme ecosystems. Because aquatic fungi are heterotrophs, it has been assumed that they possess high degree of stoichiometric homeostasis. However, data concerning their elemental composition and their degree of homeostasis remain scarce. Herein, we analyzed the C:N:P stoichiometry of mycelia in ten aquatic microfungi isolated from three hydrological systems with different nutrient conditions within Cuatro Cienegas Basin (CCB). Our hypotheses were (a) variations in C:N:P ratios reflect divergent life history strategies between the three environments, independently of the fungal taxa involved, and (b) C:N:P ratios reflect physiological adjustments associated with specific taxa, independent of the environmental characteristics. Our results provide some support for the first hypothesis, as the apparent capacity for elemental stoichiometry regulation in the aquatic microfungi was not linked to phylogenetic relationships but appeared to be an adaptation to resource availabilities in the environment in which they grew. The microfungi isolated from the most oligotrophic site within the CCB (Pozas Rojas) most strongly regulated their elemental stoichiometry in comparison with fungal isolates from other sites within CCB.

Keywords

Aquatic microfungi C:N:P stoichiometry Ecological stoichiometry Fungi phylogenetic analyses 

References

  1. Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814CrossRefGoogle Scholar
  2. Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7:884–900CrossRefGoogle Scholar
  3. Breitbart M, Hoare A, Nitti A (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienegas, Mexico. Environ Microbiol 11:16–34.  https://doi.org/10.1111/j.1462-2920.2008.01725.xCrossRefPubMedGoogle Scholar
  4. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp 595–624Google Scholar
  5. Cheever BM, Kratzer EB, Webster JR (2012) Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshw Sci 31:133–147CrossRefGoogle Scholar
  6. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  7. Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88:2563–2575.  https://doi.org/10.1890/06-1348.1CrossRefPubMedGoogle Scholar
  8. Danger M, Chauvet E (2013) Elemental composition and degree of homeostasis of fungi: are aquatic hyphomycetes more like metazoans, bacteria or plants? Fungal Ecol 6:453–457CrossRefGoogle Scholar
  9. Dighton J (1997) Nutrient cycling by saprotrophic fungi in terrestrial habitats. Mycota 4:271–279Google Scholar
  10. Duarte S, Bärlocher F, Trabulo J et al (2015) Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing. Fungal Divers 70:127–148CrossRefGoogle Scholar
  11. Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations and consequences. Ecology 80:735–751CrossRefGoogle Scholar
  12. Elser JJ, Sterner RW, Gorokhova E et al (2000a) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550.  https://doi.org/10.1111/j.1461-0248.2000.00185.xCrossRefGoogle Scholar
  13. Elser JJ, O’Brien WJ, Dobberfuhl DR et al (2000b) The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853.  https://doi.org/10.1046/j.1420-9101.2000.00215.xCrossRefGoogle Scholar
  14. Elser JJ, Schampel JH, Garcia-Pichel F et al (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825.  https://doi.org/10.1111/j.1365-2427.2005.01451.xCrossRefGoogle Scholar
  15. Escalante AE, Eguiarte LE, Espinosa-Asuar L et al (2008) Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol 65:50–60.  https://doi.org/10.1111/j.1574-6941.2008.00496.xCrossRefPubMedGoogle Scholar
  16. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364.  https://doi.org/10.1890/05-1839CrossRefGoogle Scholar
  17. Frost PC, Michelle A, Evans-White Z et al (2005) Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18–28CrossRefGoogle Scholar
  18. Huffman EWD (1977) Performance of a new automatic carbon dioxide coulometer. Microcheml J 22(4):567–573CrossRefGoogle Scholar
  19. Koojiman SALM (1995) The stoichiometry of animal energetics. J Theor Biol 177:139–149CrossRefGoogle Scholar
  20. Lee ZM, Steger L, Corman JR et al (2015) Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios. PLoS One 10(4):e0123949.  https://doi.org/10.1371/journal.pone.0123949CrossRefPubMedPubMedCentralGoogle Scholar
  21. López-Lozano NE, Eguiarte LE, Bonilla-Rosso G et al (2012) Bacterial communities and the nitrogen cycle in the gypsum soil of Cuatro Ciénegas Basin, Coahuila: a Mars analogue. Astrobiology 12:699–709.  https://doi.org/10.1089/ast.2012.0840CrossRefPubMedPubMedCentralGoogle Scholar
  22. Minckley WL, Cole GA (1968) Preliminary limnologic information on waters of the Cuatro Cienegas Basin, Mexico. Southwest Nat 13:421–431.  https://doi.org/10.2307/3668909CrossRefGoogle Scholar
  23. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphorus in natural water. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  24. Pastor A, Compson ZG, Dijkstra P et al (2014) Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia 176:1111–1121.  https://doi.org/10.1007/s00442-014-3063-yCrossRefPubMedGoogle Scholar
  25. Peimbert M, Alcaraz LD, Bonilla-Rosso G et al (2012) Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: ancient lessons on how to cope with an environment under severe nutrient stress. Astrobiology 12:648–658.  https://doi.org/10.1089/ast.2011.0694CrossRefPubMedPubMedCentralGoogle Scholar
  26. Persson J, Fink P, Goto A et al (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751.  https://doi.org/10.1111/j.1600-0706.2009.18545.xCrossRefGoogle Scholar
  27. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221Google Scholar
  28. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602.  https://doi.org/10.1890/03-8002CrossRefGoogle Scholar
  29. Schneider K, Renker C, Maraun M (2005) Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza 16:67–72CrossRefGoogle Scholar
  30. Scott EE, Prater C, Norman E et al (2013) Leaf-litter stoichiometry is affected by streamwater phosphorus concentrations and litter type. Freshw Sci 32:753–761.  https://doi.org/10.1899/12-215.1CrossRefGoogle Scholar
  31. Shearer CA, Descals E, Kohlmeyer B et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67.  https://doi.org/10.1007/s10531-006-9120-zCrossRefGoogle Scholar
  32. Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. PNAS 103:6565–6570.  https://doi.org/10.1073/pnas.0601434103CrossRefPubMedGoogle Scholar
  33. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  34. Sterner RW, Clasen L et al (1998) Carbon: phosphorus stoichiometry and food chain production. Ecol Lett 1:146–150CrossRefGoogle Scholar
  35. Tapia-Torres Y, Elser JJ, Souza V et al (2015) Ecoenzymatic stoichiometry at the extremes: how microbes cope in an ultra-oligotrophic desert soil. Soil Biol Biochem 87:34–42  https://doi.org/10.1016/j.soilbio.2015.04.007CrossRefGoogle Scholar
  36. Tapia-Torres Y, Rodríguez-Torres D, Islas A et al (2016) How to live with phosphorus scarcity in soil and sediments: lessons from bacteria. Appl Environ Microbiol 82:4652–4662CrossRefGoogle Scholar
  37. Tobler M, Carson EW (2010) Environmental variation, hybridization, and phenotypic diversification in Cuatro Cienegas pupfishes. J Evol Biol 23:1475–1489CrossRefGoogle Scholar
  38. Valdivia-Anistro JA, Eguiarte-Fruns LE, Delgado-Sapién G et al (2016) Variability of rRNA operon copy number and growth rate dynamics of Bacillus isolated from an extremely oligotrophic aquatic ecosystem. Front Microbiol 6:1486.  https://doi.org/10.3389/fmicb.2015.01486CrossRefPubMedPubMedCentralGoogle Scholar
  39. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.  https://doi.org/10.1111/j.1461-0248.2007.01139.xCrossRefPubMedPubMedCentralGoogle Scholar
  40. Velez P, Gasca-Pineda J, Rosique-Gil E et al (2016) Microfungal oasis in an oligotrophic desert: diversity patterns and community structure in three freshwater systems of Cuatro Ciénegas, Mexico. PeerJ 4:e2064CrossRefGoogle Scholar
  41. Velez P, Espinosa-Asuar L, Figueroa M et al (2018 Under revision) Nutrient dependent cross-kingdom interactions: microfungi and bacteria from an oligotrophic desert oasis. Front Microbiol (Under revision)Google Scholar
  42. Zhang J, Elser JJ (2017) Carbon:nitrogen:phosphorus stoichiometry in fungi: a meta-analysis. Front Microbiol 8:1281.  https://doi.org/10.3389/fmicb.2017.01281CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yunuen Tapia-Torres
    • 1
  • Patricia Vélez
    • 2
    • 3
  • Felipe García-Oliva
    • 4
  • Luis E. Eguiarte
    • 2
  • Valeria Souza
    • 2
  1. 1.Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCoyoacanMexico
  3. 3.Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
  4. 4.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations