Advertisement

Terrestrial N Cycling in an Endangered Oasis

  • Nguyen E. López-Lozano
  • Ana E. Escalante
  • Alberto Barrón-Sandoval
  • Teresa Perez-Carbajal
Chapter
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)

Abstract

In terrestrial arid ecosystems, one of the most limiting factors for productivity, following water, is thought to be nitrogen (N) availability. The N cycle can be summarized as an exchange of N forms between the atmosphere and the biosphere, mediated by the biological activity of microorganisms. Arid lands typically have a heterogeneous distribution of resources, with vegetated areas and microbial crusts having greater nutrient concentrations and microbial densities than bare soils. However, the contribution of each compartment to the entire N budget in these arid ecosystems is poorly understood. In this chapter, we summarize studies performed in the terrestrial component of Cuatro Cienegas Basin (CCB) regarding different aspects of the N cycle. We present selected results from two different studies that contrast microbial diversity and specific N transformations in (i) different moisture conditions and (ii) different temperatures. Although microbial crusts are important components of many desert ecosystems, there is very little evidence that the N fixed within them is in turn available to higher plants. Considering this, N fixers in the rhizosphere of plants could also be relevant N suppliers. In the last part of this chapter, we compare the potential composition of the microbial N fixers and denitrifier communities present in bare soils and in the rhizosphere of Agave lechuguilla, one of the most characteristic plant species in the Mexican arid regions. In general, these data suggest that environmental changes such as soil moisture reduction, changes in temperature, and vegetation removal could dramatically affect the terrestrial N cycle in CCB.

Keywords

Denitrifier communities N fixers Nitrification Soil bacteria Soil microbial crust 

References

  1. Aguilera LE, Gutiérrez JR, Meserve PL (1999) Variation in soil micro-organisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. J Arid Environ 42:61–70CrossRefGoogle Scholar
  2. Albuquerque L, da Costa MS (2014) The family Gaiellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg, pp 357–360Google Scholar
  3. Asner GP, Seastedt TR, Townsend AR (1997) The decoupling of terrestrial carbon and nitrogen cycles. Bioscience 47:226–234CrossRefGoogle Scholar
  4. Austin AT, Yahdjian L, Stark JM, Belnap J et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235CrossRefGoogle Scholar
  5. Baggs EM, Smales CL, Bateman EJ (2010) Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil. Biol Fertil Soils 46:793–805CrossRefGoogle Scholar
  6. Barrett M, Khalil MI, Jahangir MMR et al (2016) Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ Sci Pollut Res 23:7899–7910CrossRefGoogle Scholar
  7. Belnap J, Lange OL (2001) Biological soil crusts: structure, function and management. Ecological studies, vol 150. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  8. Bochet E, Bochet E, Rubio JL et al (1999) Modified topsoil islands within patchy Mediterranean vegetation in SE Spain. Catena 38:23–44CrossRefGoogle Scholar
  9. Butler CS, Richardson DJ (2005) The emerging molecular structure of the nitrogen cycle: an introduction to the proceedings of the 10th annual N-cycle meeting. Biochem Soc Trans 1:113–118CrossRefGoogle Scholar
  10. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138CrossRefGoogle Scholar
  11. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122CrossRefGoogle Scholar
  12. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  13. Collins SL, Sinsbaugh RL, Crenshaw C et al (2008) Pulse dynamics and microbial processes in arid-land ecosystems. J Ecol 96:413–420CrossRefGoogle Scholar
  14. Cookson WR, Müller C, O'Brien PA et al (2006) Nitrogen dynamics in an Australian semiarid grassland soil. Ecology 87:2047–2057CrossRefGoogle Scholar
  15. Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) How plant root exudates shape the nitrogen cycle. Trends Plant Sci 22:661–673CrossRefGoogle Scholar
  16. Čuhel J, Šimek M, Laughlin RJ et al (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878CrossRefGoogle Scholar
  17. D’Haene K, Moreels E, De Neve S et al (2003) Soil properties influencing the denitrification potential of Flemish agricultural soils. Biol Fertil Soils 38:358–366CrossRefGoogle Scholar
  18. Davidson EA, Matson PA, Vitousek PM et al (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130–139CrossRefGoogle Scholar
  19. Devol AH (1991) Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349:319–321CrossRefGoogle Scholar
  20. Erel R, Bérard A, Capowiez L et al (2017) Soil type determines how root and rhizosphere traits relate to phosphorus acquisition in field-grown maize genotypes. Plant Soil 412:115–132CrossRefGoogle Scholar
  21. Fitzpatrick CR, Copeland J, Wang PW et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115:201717617CrossRefGoogle Scholar
  22. Goberna M, Pascual JA, García C et al (2007) Do plant clumps constitute microbial hotspots in semi-arid Mediterranean patchy landscapes? Soil Biol Biochem 39:1047–1054CrossRefGoogle Scholar
  23. Goberna M, Navarro-Cano JA, Valiente-Banuet A et al (2014) Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett 17:1191–1201CrossRefGoogle Scholar
  24. Gu C, Riley WJ (2010) Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling: a modeling analysis. J Contam Hydrol 112:141–154CrossRefGoogle Scholar
  25. Gu J, Nicoullaud B, Rochette P et al (2013) A regional experiment suggests that soil texture is a major control of N2O emissions from tile- drained winter wheat fields during the fertilization period. Soil Biol Biochem 60:134–141CrossRefGoogle Scholar
  26. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microbial Ecol 52(2):345–357CrossRefGoogle Scholar
  27. Hanada S, Pierson BK (2006) The family Chloroflexaceae. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes: a handbook on the biology of bacteria. Springer Science+Business Media, New York, pp 815–842CrossRefGoogle Scholar
  28. Hiraishi A, Imhoff JF (2005) Genus Porphyrobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, the alpha-, beta-, delta- and epsilonproteobacteria. Springer Science and Business Media Inc., New York, pp 275–279CrossRefGoogle Scholar
  29. Kapoor R, Mukerji KG (2006) Rhizosphere microbial community dynamics. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 55–66CrossRefGoogle Scholar
  30. Kembel SW, Wu M, Eisen JA et al (2012) Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol 8:e1002743CrossRefGoogle Scholar
  31. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–823CrossRefGoogle Scholar
  32. Ligi LT, Truu M, Truu J et al (2014) Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex. Ecol Eng 72:47–55CrossRefGoogle Scholar
  33. Loik ME, Breshears DD, Lauenroth WK et al (2004) A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:269–281CrossRefGoogle Scholar
  34. López-Lozano NE, Eguiarte LE, Bonilla-Rosso G et al (2012) Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Ciénegas Basin, Coahuila: a Mars analogue. Astrobiology 12:699–709CrossRefGoogle Scholar
  35. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838CrossRefGoogle Scholar
  36. Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295:265–277CrossRefGoogle Scholar
  37. Mørkved PT, Dörsch P, Bakken LR (2007) The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 39:2048–2057CrossRefGoogle Scholar
  38. Mosier AR, Doran JW, Freney JR (2002) Managing soil denitrification. J Soil Water Conserv 57:505–512Google Scholar
  39. Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245CrossRefGoogle Scholar
  40. Neumann G, Bott S, Ohler M et al (2014) Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol 5(1–6):2PubMedPubMedCentralGoogle Scholar
  41. Niboyet A, Barthes L, Hungate BA et al (2009) Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply. Plant Soil 27:35–47Google Scholar
  42. Nicolitch O, Colin Y, Turpault MP et al (2017) Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biol Biochem 115:109–123CrossRefGoogle Scholar
  43. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512CrossRefGoogle Scholar
  44. Rıos A, Valea S, Ascaso C et al (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89Google Scholar
  45. Schlesinger WH, Raikes JA, Hartley AE et al (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374CrossRefGoogle Scholar
  46. Smart DR, Stark JM, Diego V (1999) Resource limitations to nitric oxide emissions from a sagebrush-steppe ecosystem. Biogeochemistry 47:63–86Google Scholar
  47. Stark JM, Smart DR, Hart SC et al (2002) Regulation of nitric oxide emissions from forest and rangeland soils of western North America. Ecology 83:2278–2292CrossRefGoogle Scholar
  48. Tückmantel T, Leuschner C, Preusser S et al (2017) Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment. Soil Biol Biochem 107:188–197CrossRefGoogle Scholar
  49. Vitousek PM (2002) Nutrient cycling and limitation. Hawaii as a model system. Princeton University Press, Princeton, NJGoogle Scholar
  50. Walvoord MA, Phillips FM, Stonestrom DA et al (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024CrossRefGoogle Scholar
  51. Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  52. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nguyen E. López-Lozano
    • 1
  • Ana E. Escalante
    • 2
  • Alberto Barrón-Sandoval
    • 2
  • Teresa Perez-Carbajal
    • 2
  1. 1.CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT)San Luis PotosiMexico
  2. 2.Laboratorio Nacional de Ciencias de la Sostenibilidad, Departamento de Ecología de la BiodiversidadInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCoyoacanMexico

Personalised recommendations