Carbon, Nitrogen, and Phosphorus in Terrestrial Pools: Where Are the Main Nutrients Located in the Grasslands of the Cuatro Ciénegas Basin?

  • Felipe García-Oliva
  • Yunuen Tapia-Torres
  • Cristina Montiel-Gonzalez
  • Yareni Perroni-Ventura
Part of the Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis book series (CUCIBA)


Photosynthesis is the process by which plants absorb atmospheric carbon (C) as they grow and convert it to biomass. However, plants acquire nitrogen (N) and phosphorus (P) only when these are available in the soil solution, which makes these elements the most limiting nutrients to plant growth and productivity in most terrestrial ecosystems. This chapter discusses the C, N, and P reservoirs in soil and plant biomass of two sites (Churince and Pozas Azules) in desert grassland dominated by Sporobolus airoides at the Cuatro Ciénegas Valley. We also analyzed the influence of different factors such as soil nutrients, water availability, and microbial nutrient transformations that determine the resource allocation to different pools in this oligotrophic ecosystem. We observed higher aboveground and belowground biomass in Churince than in Pozas Azules. Additionally, we observed higher C and P contents in roots, higher soil total organic C and organic P at Churince, and higher N concentration in the aboveground grass biomass at Pozas Azules. Nutrient contents showed different patterns between sites. Total carbon, N, and P contents were all higher in Churince than Pozas Azules. At the ecosystem level, organic C and organic P were higher in Churince, but no differences were observed in N. In the two soil types studied, C:N:P stoichiometric ratios were different, suggesting that the same dominant plant species makes different adjustments of nutrient concentrations depending on water and nutrient availability, a response that can affect ecosystem nutrient pools as well as various ecosystem processes.


C:N:P stoichiometric ratios Ecosystems pools grassland Nutrients dynamic Soil 



We thank Rodrigo Velazquez-Duran for his assistance during chemical analyses. We also thank the personnel of APFF Cuatro Ciénegas (CONANP) and the people in charge of Rancho Pozas Azules (PRONATURA) for permission to collect soil samples on their respective properties. This work was financed by the National Autonomous University of Mexico (PAPIIT DGAPA-UNAM grant to FGO: El papel de la disponibilidad del Carbono sobre la dinámica del Nitrógeno y Fósforo edáfico en ecosistemas contrastantes de México, IN201718).


  1. Adams JM, Faure H, Faure-Denard L et al (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348:711–714CrossRefGoogle Scholar
  2. Aerts R, Chapin FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67CrossRefGoogle Scholar
  3. Austin AT, Yahdjian L, Stark JM et al (2004) Water biogeochemical pulses and cycles in arid and semiarid ecosystems. Oecologia 141:221–235CrossRefGoogle Scholar
  4. Bremmer JM (1996) Nitrogen-Total. In: Spark DL, Page AL, Summer ME, Tabatabai MA, Helmke PA (eds) Methods of soil analyses part 3: chemical analyses. Soil Science Society of America, Madison, WI, pp 1085–1121Google Scholar
  5. Burke IC, Lauenroth WK, Vinton MA et al (1998) Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143CrossRefGoogle Scholar
  6. Chen S, Lin G, Huang J, Jenerette GD (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461CrossRefGoogle Scholar
  7. Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRefGoogle Scholar
  8. Elser JL, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater foodwebs. Nature 408:578–580CrossRefGoogle Scholar
  9. Elser J, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefGoogle Scholar
  10. Finzi AC, Austin AT, Cleland EE et al (2011) Coupled biochemical cycles: responses and feedbacks of coupled biogeochemical cycles to climate change. Examples from terrestrial ecosystems. Front Ecol Environ 9:61–67CrossRefGoogle Scholar
  11. Gallardo J, Gónzalez MI (2004) Sequestration of carbon in Spanish deciduous oak forests. Adv Geogr Ecol 37:341–351Google Scholar
  12. García-Oliva F, Hernández G, Gallardo JF (2006) Comparison of ecosystem C pools in three forests in Spain and Latin America. Ann For Sci 63:519–523CrossRefGoogle Scholar
  13. George TS, Fransson AM, Hammond JP, White PJ (2011) Phosphorus nutrition: Rhizosphere processes, plant response and adaptations. In: Bünemann EK, Oberson A, Frossart E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer-Verlag, Berlin, Heidelberg, pp 245–271CrossRefGoogle Scholar
  14. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  15. Hao Y, Wang Y, Meid X et al (2008) CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecol 33:133–143CrossRefGoogle Scholar
  16. Huffman EWD (1977) Performance of a new carbon dioxide coulometer. Microchem J 22:567–573CrossRefGoogle Scholar
  17. Hughes RF, Kauffman JB, Jaramillo VJ (2000) Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecol Appl 10:515–527CrossRefGoogle Scholar
  18. IUSS Working Group WRB (2007) World reference base for soil resources, first update 2007. World soil resources reports no. 103. FAO, RomeGoogle Scholar
  19. Jouany C, Cruz P, Daufresne J, Duru M (2011) Biological phosphorus cycling in grasslands: interaction with nitrogen. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin, Heidelberg, pp 295–316Google Scholar
  20. Lal R (2009) Sequestering carbon in soils of arid ecosystems. Land Degrad Dev 20:41–454CrossRefGoogle Scholar
  21. López-Lozano NE, Eguiarte LE, Bonilla-Rosso G et al (2012) Bacteria communities and nitrogen cycle in the gypsum soil in Cuatro Cienegas Basin, Coahuila: a Mars analogue. Astrobiology 12:699–709CrossRefGoogle Scholar
  22. McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull 102:593–614CrossRefGoogle Scholar
  23. Montaño NM, Ayala F, Bullock SH et al (2016) Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: síntesis y perspectivas. Terra Latinoam 34:39–59Google Scholar
  24. Montiel González C (2011) Dinámica de C, N y P en suelos calcáreos en el valle de Cuatro Ciénegas de Carranza, Coahuila. Master Dissertation, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  25. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  26. Ordoñez JAB, de Jong BHJ, García-Oliva F et al (2008) Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For Ecol Manag 255:2074–2084CrossRefGoogle Scholar
  27. Pasek MA, Sampson JM, Atlas Z (2014) Redox chemistry in the phosphorus biogeochemical cycle. PNAS 111:15468–15473CrossRefGoogle Scholar
  28. Perroni Y, García-Oliva F, Souza V (2014a) Plant species identity and soil P forms in an oligotrophic grassland–desert scrub system. J Arid Environ 108:29–37CrossRefGoogle Scholar
  29. Perroni Y, García-Oliva F, Tapia-Torres Y et al (2014b) Relationship between soil P fractions and microbial biomass in an oligotrophic grassland-desert scrub system. Ecol Res 29:463–472CrossRefGoogle Scholar
  30. Petrie MD, Collins SL, Swann AM et al (2015) Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Glob Chang Biol 21:1226–1235CrossRefGoogle Scholar
  31. Pinkava DJ (1974) Vegetation and flora of the Bolson of Cuatro Ciénegas Region, Coahuila, Mexico: IV. Summary, endemism and corrected catalogue. J Ariz Nev Acad Sci 19:23e47Google Scholar
  32. Poulter B, Frank D, Ciais P et al (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–604CrossRefGoogle Scholar
  33. Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693CrossRefGoogle Scholar
  34. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  35. Tapia-Torres Y, López-Lozano NE, Souza V et al (2015a) Vegetation-soil system controls soil mechanisms for nitrogen transformation in a oligotrophic Mexican desert. J Arid Environ 114:62–69CrossRefGoogle Scholar
  36. Tapia-Torres Y, Elser JJ, Souza V et al (2015b) Ecoenzymatic stoichiometry at the extremes: how microbes cope in a ultraoligotrophic desert soil. Soil Biol Biochem 87:34–42CrossRefGoogle Scholar
  37. Tapia-Torres Y, Rodríguez-Torres MD, Islas A, Elser J et al (2016) How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Appl Environ Microbiol 82:4652–4662CrossRefGoogle Scholar
  38. Taylor JA, Lloyd J (1992) Sources and sinks of atmospheric CO2. Aust J Bot 40:407–418CrossRefGoogle Scholar
  39. Trumbore SE, Davison EA, Barbosa de Carmargo P et al (1995) Belowground cycling of carbon in forest and pasture of Eastern Amazonia. Glob Biogeochem Cycles 9:515–528CrossRefGoogle Scholar
  40. Whitford WG (2002) Ecology of desert systems. Academic Press, London, UKGoogle Scholar
  41. Zhang Z, Liao H, Lucas W (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56:192–220CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Felipe García-Oliva
    • 1
  • Yunuen Tapia-Torres
    • 2
  • Cristina Montiel-Gonzalez
    • 1
  • Yareni Perroni-Ventura
    • 3
  1. 1.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Instituto de Biotecnología y Ecología AplicadaUniversidad VeracruzanaXalapaMexico

Personalised recommendations