Oxidative Stress in Ocular Disorders: Exploring the Link to Pesticide Exposure and Potential for Using Nanotechnology for Antioxidant Delivery

  • Pavan Sunkireddy
  • Bhasker Sriramoju
  • Kislay Roy
  • Rupinder Kaur Kanwar
  • Jagat Rakesh KanwarEmail author


Ocular toxicity caused due to pesticide-induced oxidative stress is a topic of great interest in toxicological research in the recent past. The human eye is directly exposed to various toxins especially pesticides. Exposure to pesticides through various routes could lead to severe ocular disorders due to oxidative stress. Antioxidant biomolecules have a great potential to combat the effects of pesticides in ocular structures. Most of these antioxidant biomolecules lack bioavailability in ocular structures; hence developing a novel nanoparticle-based antioxidant formulation could solve this issue and can offer maximum therapeutic potential for antioxidant biomolecules in prevention/control of ocular toxicity induced by pesticide. This review gives a cumulated information on various reported studies on pesticide-induced oxidative stress and how it may cause ocular toxicity. Further in this review, we have discussed how nanotechnology product-based delivery of antioxidant biomolecules could reflect on their therapeutic potential in prevention or control of pesticide-induced oxidative stress and its further effect on ocular health.


Pesticides Oxidative stress Ocular toxicity Antioxidants Nanotechnology 



Authors are thankful to the National Health and Medical Research Council (NHMRC; APP1050286) and Australia-India Strategic Research Fund (AISRF). The research fellowship to Pavan Sunkireddy from Deakin University is highly acknowledged.

Declaration of Interest

The author reports no declarations of interest. This work was supported by grants from Australia-India Strategic Research Fund (AISRF) and Deakin University.


  1. 1.
    Dich J, Zahm SH, Hanberg A, Adami HO. Pesticides and cancer. Cancer Causes Control. 1997;8:420–43.CrossRefGoogle Scholar
  2. 2.
    Voccia I, Blakley B, Brousseau P, Fournier M. Immunotoxicity of pesticides: a review. Toxicol Ind Health. 1999;15:119–32.CrossRefGoogle Scholar
  3. 3.
    Cooper J, Dobson H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007;26:1337–48.CrossRefGoogle Scholar
  4. 4.
    Charles MB. Impacts of genetically engineered crops on pesticide use in the U.S. -- the first sixteen years. Environ Sci Eur. 2012;24:1–13.CrossRefGoogle Scholar
  5. 5.
    Jeyaratnam J. Acute pesticide poisoning: a major global health problem. World Health Stat Q. 1990;43:139–44.PubMedGoogle Scholar
  6. 6.
    Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med. 2003;35:1491–9.CrossRefGoogle Scholar
  7. 7.
    Christos AD, Ilias GE. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8:1402–19.CrossRefGoogle Scholar
  8. 8.
    Gilden RC, Huffling K, Sattler B. Pesticides and health risks. J Obstet Gynecol Neonatal Nurs. 2010;39:103–10.CrossRefGoogle Scholar
  9. 9.
    Fareeda M, Chandrasekharan NK, Manoj KP, Vipin B, Mohammed K, Anup KS. Visual disturbances with cholinesterase depletion due to exposure of agricultural pesticides among farm workers. Toxicol Environ Chem. 2012;94:1601–9.CrossRefGoogle Scholar
  10. 10.
    Sharma Y, Bashir S, Irshad M, Gupta SD, Dogra TD. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology. 2005;206:49–57.CrossRefGoogle Scholar
  11. 11.
    White RE. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol Ther. 1991;49:21–42.CrossRefGoogle Scholar
  12. 12.
    Hubble JP, Cao T, Hassanein RES, Neuberger JS, Roller WC. Risk factors for Parkinson's disease. Neurology. 1993;43:1693.CrossRefGoogle Scholar
  13. 13.
    Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep. 2006;58:353–63.PubMedGoogle Scholar
  14. 14.
    Evans JR. Antioxidant vitamin and mineral supplements for age-related macular degeneration. Cochrane Database Syst Rev. 2002;2:CD000254.Google Scholar
  15. 15.
    Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Coats DK. Retinopathy of prematurity: involution, factors predisposing to retinal detachment, and expected utility of preemptive surgical reintervention. Trans Am Ophthalmol Soc. 2005;103:281–312.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Fong DS, Aiello LP, Ferris FL 3rd, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27:2540–53.CrossRefGoogle Scholar
  18. 18.
    Arden GB, Sivaprasad S. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev. 2011;7:291–304.CrossRefGoogle Scholar
  19. 19.
    Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci. 2007;48:3805–11.CrossRefGoogle Scholar
  20. 20.
    Zhu Y, Zhang XL, Zhu BF, Ding YN. Effect of antioxidant N-acetylcysteine on diabetic retinopathy and expression of VEGF and ICAM-1 from retinal blood vessels of diabetic rats. Mol Biol Rep. 2012;39:3727–35.CrossRefGoogle Scholar
  21. 21.
    Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012;18:273–82.CrossRefGoogle Scholar
  22. 22.
    Pavan S, Shashi NJ, Jagat RK, Subhash CY. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B Biointerfaces. 2013;112:554–62.CrossRefGoogle Scholar
  23. 23.
    Kyselova Z, Garcia SJ, Gajdosikova A, Gajdosik A, Stefek M. Temporal relationship between lens protein oxidation and cataract development in streptozotocin-induced diabetic rats. Physiol Res. 2005;54:49–56.PubMedGoogle Scholar
  24. 24.
    Garner MH, Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. PNAS. 1980;77:1274–7.CrossRefGoogle Scholar
  25. 25.
    Donald JE. Pesticide use in developing countries. Toxicology. 2001;160:27–33.CrossRefGoogle Scholar
  26. 26.
    Rodrigo F, Li S, Rodriguez-Rocha H, Michaela B, Mihalis IP. Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact. 2010;188:289–300.CrossRefGoogle Scholar
  27. 27.
    Bonneh-Barkay D, Langston WJ, Di Monte DA. Toxicity of redox cycling pesticides in primary mesencephalic cultures. Antioxid Redox Signal. 2005;7:649–53.CrossRefGoogle Scholar
  28. 28.
    Antonio FH, Marina L, Fernando G, Rodríguez-Barrancob M, Antonio P, López-Guarnidoa O. Evaluation of pesticide-induced oxidative stress from a gene–environment interaction perspective. Toxicology. 2013;307:95–102.CrossRefGoogle Scholar
  29. 29.
    Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity – short review. Pestic Biochem Physiol. 2010;98:145–50.CrossRefGoogle Scholar
  30. 30.
    Gennaro G, Zhara A, Marina G, Annabella V, Terrance JK, Lucio GC. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol. 2007;219:181–9.CrossRefGoogle Scholar
  31. 31.
    Gultekin F, Ozturk M, Akdogan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol. 2000;74:533–8.CrossRefGoogle Scholar
  32. 32.
    Akhgari M, Abdollahi M, Kebryaeezadeh A, Hosseini R, Sabzevari O. Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol. 2003;22:205–11.CrossRefGoogle Scholar
  33. 33.
    Ismail I, Ismail C. Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbowtrout (Oncorhynchus mykiss). Pestic Biochem Physiol. 2008;92:38–42.CrossRefGoogle Scholar
  34. 34.
    Pathak R, Suke SG, Ahmed T, Ahmed RS, Tripathi AK, Guleria K, Sharma CS, Makhijani SD, Banerjee BD. Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases. Hum Exp Toxicol. 2010;29:351–8.CrossRefGoogle Scholar
  35. 35.
    Pal R, Ahmed T, Kumar V, Suke SG, Ray A, Banerjee BD. Protective effects of different antioxidants against endosulfan-induced oxidative stress and immunotoxicity in albino rats. Indian J Exp Biol. 2009;47:723–9.PubMedGoogle Scholar
  36. 36.
    Koner BC, Banerjee BD, Ray A. Organochlorine pesticide-induced oxidative stress and immune suppression in rats. Indian J Exp Biol. 1998;36:395–8.PubMedGoogle Scholar
  37. 37.
    Atamaniuk TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI. The mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney. Environ Toxicol. 2014;29(11):1227–35.PubMedGoogle Scholar
  38. 38.
    Rajeswary S, Kumaran B, Ilangovan R, Yuvaraj S, Sridhar M, Venkataraman P, Srinivasan N, Aruldhas MM. Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats. Reprod Toxicol. 2007;24:371–80.CrossRefGoogle Scholar
  39. 39.
    Kesavachandran C, Pathak MK, Fareed M, Bihari V, Mathur N, Srivastava AK. Health risks of employees working in pesticide retail shops: an exploratory study. Indian J Occup Environ Med. 2009;13:121–6.CrossRefGoogle Scholar
  40. 40.
    Rahman T, Ismail H, Towhidul Islam MM, Hossain US. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3:997–1019.CrossRefGoogle Scholar
  41. 41.
    Williams DL. Oxidative stress and the eye. Vet Clin North Am Small Anim Pract. 2008;38:179–92.CrossRefGoogle Scholar
  42. 42.
    Kirrane EF, Hoppin JA, Kamel F, Umbach DM, Boyes WK, Deroos AJ, Alavanja M, Sandler DP. Retinal degeneration and other eye disorders in wives of farmer pesticide applicators enrolled in the agricultural health study. Am J Epidemiol. 2005;161:1020–9.CrossRefGoogle Scholar
  43. 43.
    Kamel F, Boyes WK, Gladen BC, Rowland AS, Alavanja MC, Blair A, Sandler DP. Retinal degeneration in licensed pesticide applicators. Am J Ind Med. 2000;37:618–28.CrossRefGoogle Scholar
  44. 44.
    Ravneet, Johal MS, Sharma ML. Three-dimensional study on the effect of organophosphate pesticide ‘monocrotophos’ on lens of fish and its recover. Vet Ophthalmol. 2009;12:152–7.CrossRefGoogle Scholar
  45. 45.
    Uppal RK, Johal MS, Sharma ML. Toxicological effects and recovery of the corneal epithelium in Cyprinus carpio communis Linn. exposed to monocrotophos: an scanning electron microscope study. Vet Ophthalmol. 2015 May;18(3):214–20.CrossRefGoogle Scholar
  46. 46.
    Fu Y, Ziren W, Bao J, Yongqiang W, Jing W, Decheng B. Apoptotic effect of organophosphorus insecticide chlorpyrifos on mouse retina in vivo via oxidative stress and protection of combination of vitamins C and E. Exp Toxicol Pathol. 2008;59:415–23.CrossRefGoogle Scholar
  47. 47.
    Jasna JM, Anandbabu K, Bharathi SR, Angayarkanni N. Paraoxonase enzyme protects retinal pigment epithelium from chlorpyrifos insult. PLoS One. 2014;9:1–10.CrossRefGoogle Scholar
  48. 48.
    Hiroko I, Mikio M, Shigekazu U, Satoshi I. Retinal degeneration in rats exposed to an organophosphate pesticide (fenthion). Environ Res. 1983;30:453–65.CrossRefGoogle Scholar
  49. 49.
    Khalid R. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2:219–36.Google Scholar
  50. 50.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.CrossRefGoogle Scholar
  51. 51.
    Swaran JSF. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev. 2009;2:191–206.CrossRefGoogle Scholar
  52. 52.
    Bayani U, Ajay VS, Paolo Z, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.CrossRefGoogle Scholar
  53. 53.
    Banerjee BD, Seth V, Ahmed RS. Pesticide-induced oxidative stress: perspectives and trends. Rev Environ Health. 2001;16:1–40.CrossRefGoogle Scholar
  54. 54.
    Fatma GU, Filiz D, Suna K, Hatice B, Yusuf K. Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol. 2010;48:1714–20.CrossRefGoogle Scholar
  55. 55.
    Radhey SV, Anugya M, Nalini S. Comparative studies on chlorpyrifos and methyl parathion induced oxidative stress in different parts of rat brain: attenuation by antioxidant vitamins. Pestic Biochem Physiol. 2009;95:152–8.CrossRefGoogle Scholar
  56. 56.
    Shittua M, Ayoa JO, Ambali SF, Fatihu MY, Onyeanusi BI, Kawua MU. Chronic chlorpyrifos-induced oxidative changes in the testes and pituitary gland of Wistar rats: ameliorative effects of vitamin C. Pestic Biochem Physiol. 2012;102:79–85.CrossRefGoogle Scholar
  57. 57.
    Nadia SA, Aneesa SM, Mosaad AA. Chlorpyrifos-induced oxidative stress and histological changes in retinas and kidney in rats: protective role of ascorbic acid and alpha tocopherol. Pestic Biochem Physiol. 2010;98:33–8.CrossRefGoogle Scholar
  58. 58.
    Avnesh K, Sudesh KY, Subhash CY. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.CrossRefGoogle Scholar
  59. 59.
    Arto U. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.CrossRefGoogle Scholar
  60. 60.
    Ripal G, Hari KA, Ashwin P, Ashim KM. Ocular drug delivery. AAPS J. 2010;12:348–60.CrossRefGoogle Scholar
  61. 61.
    Ramesh CN, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136:2–13.CrossRefGoogle Scholar
  62. 62.
    Pahuja P, Arora S, Pawar P. Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv. 2012;9:837–61.CrossRefGoogle Scholar
  63. 63.
    Sheetu W, Rishi P, Shivani RP, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15:2724–50.CrossRefGoogle Scholar
  64. 64.
    Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13:144–51.CrossRefGoogle Scholar
  65. 65.
    Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23:3247–55.CrossRefGoogle Scholar
  66. 66.
    Bucolo C, Maltese A, Puglisi G, Pignatello R. Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100 nanoparticle suspension. Ophthalmic Res. 2002;34:319–23.CrossRefGoogle Scholar
  67. 67.
    Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315:12–7.CrossRefGoogle Scholar
  68. 68.
    Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.CrossRefGoogle Scholar
  69. 69.
    Sakai T, Kohno H, Ishihara T, Higaki M, Saito S, Matsushima M, Mizushima Y, Kitahara K. Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res. 2006;82:657–63.CrossRefGoogle Scholar
  70. 70.
    Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6:324–33.CrossRefGoogle Scholar
  71. 71.
    Gadad AP, Sharat Chandra P, Dandagi PM, Mastiholimath VS. Moxifloxacin loaded polymeric nanoparticles for sustained ocular drug delivery. Int J Phar Sci Nanotechnol. 2012;5:1727–34.Google Scholar
  72. 72.
    Başaran E, Yazan Y. Ocular application of chitosan. Expert Opin Drug Deliv. 2012;9:701–12.CrossRefGoogle Scholar
  73. 73.
    Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Chitosan and its role in ocular therapeutics. Mini Rev Med Chem. 2009;9:1639–47.CrossRefGoogle Scholar
  74. 74.
    Jane LG, Clive GW. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev. 1993;11:349–83.CrossRefGoogle Scholar
  75. 75.
    de Campos AM, Diebold Y, Carvalho EL, Sanchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.CrossRefGoogle Scholar
  76. 76.
    Diebold Y, Jarrin M, Saez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28:1553–64.CrossRefGoogle Scholar
  77. 77.
    De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.CrossRefGoogle Scholar
  78. 78.
    Alia AB, Hanan ME, Riad KE, Hala E, Mohamed E. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res. 2008;31:1040–9.CrossRefGoogle Scholar
  79. 79.
    Ujwala S, Hadi AM, Kavita S. Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Deliv. 2013;2013:562727.Google Scholar
  80. 80.
    Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterisation. Eur J Pharm Biopharm. 2008;68:513–25.PubMedGoogle Scholar
  81. 81.
    de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008;49:2016–24.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pavan Sunkireddy
    • 1
    • 2
  • Bhasker Sriramoju
    • 1
  • Kislay Roy
    • 1
  • Rupinder Kaur Kanwar
    • 1
  • Jagat Rakesh Kanwar
    • 1
    Email author
  1. 1.Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medical Research (MMR), Faculty of Health, Deakin UniversityGeelongAustralia
  2. 2.Biotechnology and Management of Bioresources Division The Energy and Resources Institute Darbari Seth Block, India Habitat CentreNew DelhiIndia

Personalised recommendations