Penetration Routes to Retina and Posterior Segment

  • M. Naveed YasinEmail author
  • Sachin S. Thakur
  • Ilva D. Rupenthal


Many factors affect the selection of an appropriate penetration route for drug delivery to the posterior segment of the eye. Therefore, the molecular penetration routes need to be understood and considered thoroughly while designing a drug delivery system. In this chapter, four primary administration routes, these being (1) systemic, (2) topical, (3) periocular and suprachoroidal, and (4) intraocular, are discussed with unique advantages as well as their own challenges. To achieve a balance of the desired therapeutic outcomes without compromising safety and patient’s adherence to therapy, a number of formulations/actives have been investigated so far and are discussed in the various sections of this chapter.


  1. 1.
    Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41(5):961–4.Google Scholar
  2. 2.
    Jooybar E, et al. Computational modeling of drug distribution in the posterior segment of the eye: effects of device variables and positions. Math Biosci. 2014;255:11–20.CrossRefGoogle Scholar
  3. 3.
    Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.CrossRefGoogle Scholar
  4. 4.
    Le Bourlais C, et al. Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res. 1998;17(1):33–58.CrossRefGoogle Scholar
  5. 5.
    Ranta V-P, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–81.CrossRefGoogle Scholar
  6. 6.
    Rai UDJP, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491–5.CrossRefGoogle Scholar
  7. 7.
    Lee SS, Robinson MR. Novel drug delivery Systems for Retinal Diseases. Ophthalmic Res. 2009;41(3):124–35.CrossRefGoogle Scholar
  8. 8.
    Thrimawithana TR, et al. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5–6):270–7.CrossRefGoogle Scholar
  9. 9.
    Rupenthal ID, Alany RG. Ocular drug delivery. In: Pharmaceutical manufacturing handbook: John Wiley & Sons, Inc; 2007. p. 729–67. New York, USAGoogle Scholar
  10. 10.
    Hughes PM, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.CrossRefGoogle Scholar
  11. 11.
    Schmitt CJ, Lotti VJ, LeDouarec JC. Penetration of timolol into the rabbit eye: measurements after ocular instillation and intravenous injection. Arch Ophthalmol. 1980;98(3):547–51.CrossRefGoogle Scholar
  12. 12.
    Edelhauser HF, et al. Ophthalmic drug delivery Systems for the Treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–20.CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Campbell M, et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A. 2009;106(42):17817–22.CrossRefGoogle Scholar
  15. 15.
    Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305–10.PubMedGoogle Scholar
  16. 16.
    Thurman JM, et al. Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem. 2009;284(25):16939–47.CrossRefGoogle Scholar
  17. 17.
    Qaum T, et al. VEGF-initiated blood–retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci. 2001;42(10):2408–13.PubMedGoogle Scholar
  18. 18.
    Participants VR. Guidelines for using verteporfin (visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: Update. Retina. 2005;25(2):119–34.CrossRefGoogle Scholar
  19. 19.
    Schmid-Kubista KE, et al. Systemic bevacizumab (Avastin) therapy for exudative neovascular age-related macular degeneration. The BEAT-AMD-study. Br J Ophthalmol. 2009;93(7):914–9.CrossRefGoogle Scholar
  20. 20.
    Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–62.CrossRefGoogle Scholar
  21. 21.
    Molokhia SA, et al. Anterior eye segment drug delivery systems: current treatments and future challenges. J Ocul Pharmacol Ther. 2013;29(2):92–105.CrossRefGoogle Scholar
  22. 22.
    Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev. 1995;16(1):3–19.CrossRefGoogle Scholar
  23. 23.
    Mizuno K, et al. Route of penetration of topically instilled Nipradilol into the ipsilateral posterior retina. Invest Ophthalmol Vis Sci. 2009;50(6):2839–47.CrossRefGoogle Scholar
  24. 24.
    Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005;60(2):207–25.CrossRefGoogle Scholar
  25. 25.
    Gaudana R, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–60.CrossRefGoogle Scholar
  26. 26.
    Chowdhury P, Borah JM. Soft glucocorticoids: eye-targeted chemical delivery systems (CDSs) and Retrometabolic drug design: a review. In: Glucocorticoids-new recognition of our familiar friend: InTech; 2012. p. 613–46. London, UKGoogle Scholar
  27. 27.
    Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18(7):385–93.CrossRefGoogle Scholar
  28. 28.
    de Cogan F, et al. Topical delivery of anti-VEGF drugs to the ocular posterior segment using cell-penetrating peptides. Invest Ophthalmol Vis Sci. 2017;58(5):2578–90.CrossRefGoogle Scholar
  29. 29.
    Myles M, et al. Ocular iontophoresis. In: Mitra AK, editor. Ophthalmic drug delivery systems. Second ed. Hoboken: CRC Press; 2003. p. 365–408.CrossRefGoogle Scholar
  30. 30.
    Cassagne M, et al. Iontophoresis Transcorneal delivery technique for Transepithelial Corneal Collagen crosslinking with Riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016;57(2):594–603.CrossRefGoogle Scholar
  31. 31.
    Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006;110(3):479–89.CrossRefGoogle Scholar
  32. 32.
    Voigt M, et al. Ocular aspirin distribution: a comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest Ophthalmol Vis Sci. 2002;43(10):3299–306.PubMedGoogle Scholar
  33. 33.
    Ghate D, et al. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular Fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48(5):2230–7.CrossRefGoogle Scholar
  34. 34.
    Amrite AC, et al. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Molecular Vision. 2008;14:150–60.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.CrossRefGoogle Scholar
  36. 36.
    Campochiaro PA, et al. Suprachoroidal triamcinolone Acetonide for retinal vein occlusion: results of the tanzanite study. Ophthalmology Retina. 2018;2(4):320–8.CrossRefGoogle Scholar
  37. 37.
    Chen M, et al. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release. 2015;203:109–17.CrossRefGoogle Scholar
  38. 38.
    Tyagi P, Kadam RS, Kompella UB. Comparison of Suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive Fluorophotometry. PLoS One. 2012;7(10):e48188.CrossRefGoogle Scholar
  39. 39.
    Goldstein DA. Achieving drug delivery Via the Suprachoroidal Space. Retina Today. 2014:82–7.Google Scholar
  40. 40.
    Robinson MR, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82(3):479–87.CrossRefGoogle Scholar
  41. 41.
    Choi YJ, et al. Intravitreal versus posterior Subtenon injection of Triamcinolone Acetonide for diabetic Macular Edema. Korean J Ophthalmol. 2006;20(4):205–9.CrossRefGoogle Scholar
  42. 42.
    DeVore DP., Eiferman RA, Keates EU. Compound delivery using rapidly dissolving collagen film. 2002, Google Patents.Google Scholar
  43. 43.
    Pontes de Carvalho RA, et al. Delivery from Episcleral exoplants. Invest Ophthalmol Vis Sci. 2006;47(10):4532–9.CrossRefGoogle Scholar
  44. 44.
    Gu B, et al. Real-time monitoring of Suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in Guinea Pig Eyes. Invest Ophthalmol Vis Sci. 2015;56(6):3623–34.CrossRefGoogle Scholar
  45. 45.
    Patel SR, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.CrossRefGoogle Scholar
  46. 46.
    Olsen TW, et al. Pharmacokinetics of Pars Plana intravitreal injections versus Microcannula Suprachoroidal injections of Bevacizumab in a Porcine Model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56.CrossRefGoogle Scholar
  47. 47.
    Qiu TG. New Frontiers of Retinal Therapeutic Innovation & Strategic Insights. EC Ophthalmology. 2015;2:81–91.Google Scholar
  48. 48.
    Willoughby AS, et al. Choroidal changes after Suprachoroidal injection of triamcinolone Acetonide in eyes with macular edema secondary to retinal vein occlusion. Am J Ophthalmol. 2018;186:144–51.CrossRefGoogle Scholar
  49. 49. last Accessed on 31 May 2018 [Perma link:].
  50. 50.
    Gilger BC, et al. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. Vet Ophthalmol. 2010;13(5):294–300.CrossRefGoogle Scholar
  51. 51.
    Olsen TW, et al. Cannulation of the Suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–787.e2.CrossRefGoogle Scholar
  52. 52.
    Thakur SS, et al. Intravitreal drug delivery in retinal disease: are we out of our depth? Expert Opin Drug Deliv. 2014;11(10):1575–90.CrossRefGoogle Scholar
  53. 53.
    Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358(24):2606–17.CrossRefGoogle Scholar
  54. 54.
    Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27(7):787–94.CrossRefGoogle Scholar
  55. 55.
    Bourges JL, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58(11):1182–202.CrossRefGoogle Scholar
  56. 56.
    Yasin MN, et al. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–21.CrossRefGoogle Scholar
  57. 57.
    Ryu M, et al. Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. J Control Release. 2011;151(1):65–73.CrossRefGoogle Scholar
  58. 58.
    Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res. 2002;19(11):1636–47.CrossRefGoogle Scholar
  59. 59.
    Balachandran RK, Barocas VH. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm Res. 2011;28(5):1049–64.CrossRefGoogle Scholar
  60. 60.
    Mains J, et al. A pharmacokinetic study of a combination of beta adrenoreceptor antagonists – in the isolated perfused ovine eye. Eur J Pharm Biopharm. 2012;80(2):393–401.CrossRefGoogle Scholar
  61. 61.
    Xu Q, et al. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J Control Release. 2013;167(1):76–84.CrossRefGoogle Scholar
  62. 62.
    Sebag J. Ageing of the vitreous. Eye. 1987;1(2):254–62.CrossRefGoogle Scholar
  63. 63.
    Tan LE, et al. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Invest Ophthalmol Vis Sci. 2011;52(2):1111–8.CrossRefGoogle Scholar
  64. 64.
    Nomoto H, et al. Pharmacokinetics of Bevacizumab after topical, subconjunctival, and intravitreal Administration in Rabbits. Invest Ophthalmol Vis Sci. 2009;50(10):4807–13.CrossRefGoogle Scholar
  65. 65.
    Candiello J, Cole GJ, Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 2010;29(5):402–10.CrossRefGoogle Scholar
  66. 66.
    Koo H, et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33(12):3485–93.CrossRefGoogle Scholar
  67. 67.
    Wong LL, et al. Catalytic Nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One. 2013;8(3):e58431.CrossRefGoogle Scholar
  68. 68.
    Dalkara D, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17(12):2096–102.CrossRefGoogle Scholar
  69. 69.
    Shen WY, Rakoczy PE. Uptake dynamics and retinal tolerance of phosphorothioate oligonucleotide and its direct delivery into the site of choroidal neovascularization through subretinal administration in the rat. Antisense Nucleic Acid Drug Dev. 2001;11(4):257–64.CrossRefGoogle Scholar
  70. 70.
    Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60.CrossRefGoogle Scholar
  71. 71.
    Thakur SS, et al. Stably engineered nanobubbles and ultrasound – an effective platform for enhanced macromolecular delivery to representative cells of the retina. PLoS One. 2017;12(5):e0178305.CrossRefGoogle Scholar
  72. 72.
    Huang D, et al. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur J Pharm Biopharm. 2017;119.(Supplement C:125–36.CrossRefGoogle Scholar
  73. 73.
    Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.CrossRefGoogle Scholar
  74. 74.
    del Amo EM, et al. Intravitreal clearance and volume of distribution of compounds in rabbits: in silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm. 2015;95:215–26.CrossRefGoogle Scholar
  75. 75.
    Meyer CH, Krohne TU, Holz FG. Intraocular pharmacokinetics after a single intravitreal injection of 1.5 mg versus 3.0 mg of bevacizumab in humans. Retina. 2011;31(9):1877–84.CrossRefGoogle Scholar
  76. 76.
    Li SK, et al. MRI study of subconjunctival and intravitreal injections. J Pharm Sci. 2012;101(7):2353–63.CrossRefGoogle Scholar
  77. 77.
    Pitkänen L, et al. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46(2):641–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. Naveed Yasin
    • 1
    Email author
  • Sachin S. Thakur
    • 2
  • Ilva D. Rupenthal
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations