Skip to main content

Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers, and Restrictions

  • Chapter
  • First Online:

Abstract

Posterior eye segment diseases have been a crucial health ailment for years due to the anatomical structure of the human eye and the challenges to deliver drugs to certain tissues in the eye. This chapter discusses the parts of the posterior segment and its functions along with the possible barriers to conventional treatments. Topical and systematic drug delivery systems are traditional ways of treating most ocular diseases. However, these are not as effective due to low absorption, degradation of the therapeutic agents via enzymes, and toxicity due to higher drug doses to compensate for the low permeability. On the other hand, intravitreal, transscleral diffusion and iontophoresis along with ocular implants are novel techniques that increase the bioavailability as well as precision of the drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J Pharm Sci. 1987;76:583–6.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26:584–7.

    CAS  PubMed  Google Scholar 

  3. Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules. 2007;12:373–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ambati J, Adamis AP. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21:145–51.

    Article  CAS  PubMed  Google Scholar 

  5. Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A l, Weissgold DJ, Kim I, Delori F o C, Adamis AP. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41:1181–5.

    CAS  PubMed  Google Scholar 

  6. Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25:2685–96.

    Article  CAS  PubMed  Google Scholar 

  7. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.

    Article  CAS  PubMed  Google Scholar 

  8. Barocas VH, Balachandran RK. Sustained transscleral drug delivery. Expert Opin Drug Deliv. 2008;5:1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Bazile DV. Nanotechnologies in drug delivery – an industrial perspective. J Drug Delivery Sci Technol. 2014;24:12–21.

    Article  CAS  Google Scholar 

  10. Behar-Cohen FF, BenEzra D, Einmahl S, Gurny R. Challenges of intraocular drug delivery. Eur Pharm Rev. 2001;6:35–40.

    Google Scholar 

  11. Bochot A l, Fattal E, Boutet V r, Deverre JR, Jeanny JC, Chacun H l, Couvreur P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci. 2002;43:253–9.

    PubMed  Google Scholar 

  12. Bourges J-L, Bloquel C, Thomas A l, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar-Cohen F. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58:1182–202.

    Article  CAS  PubMed  Google Scholar 

  13. Cheruvu CPS, Ayalasomayajula SP, Kompella UB. Retinal delivery of sodium fluorescein, budesonide & celecoxib following subconjunctival injection. Drug Delivery Tech. 2003:3(6):62–7.

    Google Scholar 

  14. Cheruvu NPS, Kompella UB. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch’s layer. Invest Ophthalmol Vis Sci. 2006;47:4513–22.

    Article  PubMed  Google Scholar 

  15. Cholkar K, Patel A, Dutt Vadlapudi A, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2:82–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung YB, Han K, Nishiura A, Lee VHL. Ocular absorption of Pz-peptide and its effect on the ocular and systemic pharmacokinetics of topically applied drugs in the rabbit. Pharm Res. 1998;15:1882–7.

    Article  CAS  PubMed  Google Scholar 

  17. Colone M, Calcabrini A, Toccacieli L, Bozzuto G, Stringaro A, Gentile M, Cianfriglia M, Ciervo A, Caraglia M, Budillon A. The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J Invest Dermatol. 2008;128:957–71.

    Article  CAS  PubMed  Google Scholar 

  18. Conrad JM, Robinson JR. Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci. 1980;69:875–84.

    Article  CAS  PubMed  Google Scholar 

  19. Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev. 2008;60:757–67.

    Article  CAS  PubMed  Google Scholar 

  20. Conway BR. Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul. 2008;2:1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23:279–96.

    Article  CAS  PubMed  Google Scholar 

  22. Cunha-Vaz JG. The blood retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.

    Article  CAS  PubMed  Google Scholar 

  23. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973;323:466–83.

    Article  CAS  PubMed  Google Scholar 

  24. Dash A, Cudworth G. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40:1–12.

    Article  CAS  PubMed  Google Scholar 

  25. Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today. 2008;13:135–43.

    Article  PubMed  CAS  Google Scholar 

  26. Demetriades AM, Deering T, Liu H, Lu L, Gehlbach P, Packer JD, Gabhann FM, Popel AS, Wei LL, Campochiaro PA. Trans-scleral delivery of antiangiogenic proteins. J Ocul Pharmacol Ther. 2008;24:70–9.

    Article  CAS  PubMed  Google Scholar 

  27. Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2003;3:45–56.

    Article  CAS  PubMed  Google Scholar 

  28. Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metab. 2004;5:507–15.

    Article  CAS  PubMed  Google Scholar 

  29. Eljarrat-Binstock E, Peer J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–43.

    Article  CAS  PubMed  Google Scholar 

  30. Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci. 2004;45:2543–8.

    Article  PubMed  Google Scholar 

  31. Frucht-Pery J, Mechoulam H, Siganos CS, Ever-Hadani P, Shapiro M, Domb A. Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp Eye Res. 2004;78:745–9.

    Article  CAS  PubMed  Google Scholar 

  32. Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–4.

    CAS  PubMed  Google Scholar 

  33. Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52:37–48.

    Article  CAS  PubMed  Google Scholar 

  34. Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48:2230–7.

    Article  PubMed  Google Scholar 

  35. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–87.

    Article  CAS  PubMed  Google Scholar 

  36. Gilbert JA, Simpson AE, Rudnick DE, Geroski DH, Aaberg TM, Edelhauser HF. Transscleral permeability and intraocular concentrations of cisplatin from a collagen matrix. J Control Release. 2003;89:409–17.

    Article  CAS  PubMed  Google Scholar 

  37. Gleeson JP, Ryan SM, Brayden DJ. Oral delivery strategies for nutraceuticals: delivery vehicles and absorption enhancers. Trends Food Sci Technol. 2016;53:90–101.

    Article  CAS  Google Scholar 

  38. Guidetti B, Azema J, Malet-Martino M, Martino R. Delivery systems for the treatment of proliferative vitreoretinopathy: materials, devices and colloidal carriers. Curr Drug Deliv. 2008;5:7–19.

    Article  CAS  PubMed  Google Scholar 

  39. Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res. 2011;6:317.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38:627–34.

    CAS  PubMed  Google Scholar 

  41. Hayden B, Jockovich M-E, Murray TG, Kralinger MT, Voigt M, Hernandez E, Feuer W, Parel J-M. Iontophoretic delivery of carboplatin in a murine model of retinoblastoma. Invest Ophthalmol Vis Sci. 2006;47:3717–21.

    Article  PubMed  Google Scholar 

  42. Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52:5–16.

    Article  CAS  PubMed  Google Scholar 

  43. Hormann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions – a review. J Control Release. 2016;223:85–98.

    Article  PubMed  CAS  Google Scholar 

  44. Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18:235–9.

    Article  PubMed  Google Scholar 

  45. Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci. 1983;72:1272–9.

    Article  CAS  PubMed  Google Scholar 

  46. Hughes PM, Olejnik O, Chang-Lin J-E, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57:2010–32.

    Article  CAS  PubMed  Google Scholar 

  47. Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–27.

    Article  CAS  PubMed  Google Scholar 

  48. Jaffe GJ, Martin D, Callanan D, Pearson PA, Levy B, Comstock T, G. Fluocinolone Acetonide Uveitis Study. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four week results of a multicenter randomized clinical study. Ophthalmology. 2006;113:1020–7.

    Article  PubMed  Google Scholar 

  49. Jain R, Agarwal S, Majumdar S, Zhu X, Pal D, Mitra AK. Evasion of P-gp mediated cellular efflux and permeability enhancement of HIV-protease inhibitor saquinavir by prodrug modification. Int J Pharm. 2005;303:8–19.

    Article  CAS  PubMed  Google Scholar 

  50. Jain R, Majumdar S, Nashed Y, Pal D, Mitra AK. Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization. Mol Pharm. 2004;1:290–9.

    Article  CAS  PubMed  Google Scholar 

  51. Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.

    Article  CAS  PubMed  Google Scholar 

  52. Kaiser PK, Goldberg MF, Davis AA, Anecortave Acetate Clinical Study G. Posterior juxtascleral depot administration of anecortave acetate. Surv Ophthalmol. 2007;52:S62–9.

    Article  PubMed  Google Scholar 

  53. Kao JC, Geroski DH, Edelhauser HF. Transscleral permeability of fluorescent-labeled antibiotics. J Ocul Pharmacol Ther. 2005;21:1–10.

    Article  CAS  PubMed  Google Scholar 

  54. Kaufman PL, Adler FH, Levin LA, Alm A. Adler’s physiology of the eye. Edinburgh: Elsevier Health Sciences; 2011.

    Google Scholar 

  55. Kaur N, Yadav K, Garg R, Saroha K, Yadav D. Formulation and In Vitro characterization of Ketoconazole span 80 based Transfersomes gel, its comparison with Liposomal gel and evaluation of AAntimicrobial activity. J Bionanosci. 2016;10:191–204.

    Article  CAS  Google Scholar 

  56. Kiernan DF, Lim JI. Topical drug delivery for posterior segment disease. Retina Today. 2010;5:48–51.

    Google Scholar 

  57. Kim ES, Durairaj C, Kadam RS, Lee SJ, Mo Y, Geroski DH, Kompella UB, Edelhauser HF. Human scleral diffusion of anticancer drugs from solution and nanoparticle formulation. Pharm Res. 2009;26:1155–61.

    Article  CAS  PubMed  Google Scholar 

  58. Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, Wang NS, Csaky KG. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2004;45:2722–31.

    Article  PubMed  Google Scholar 

  59. Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39:244–54.

    Article  CAS  PubMed  Google Scholar 

  60. Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release. 2014;190:172–81.

    Article  CAS  PubMed  Google Scholar 

  61. Lalwani GA, Rosenfeld PJ, Fung AE, Dubovy SR, Michels S, Feuer W, Davis JL, Flynn HW, Esquiabro M. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol. 2009;148:43–58. e1

    Article  CAS  PubMed  Google Scholar 

  62. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16:39–43.

    Article  CAS  Google Scholar 

  63. Laude A, Tan LE, Wilson CG, Lascaratos G, Elashry M, Aslam T, Patton N, Dhillon B. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 2010;29:466–75.

    Article  CAS  PubMed  Google Scholar 

  64. Lee S-B, Geroski DH, Prausnitz MR, Edelhauser HF. Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res. 2004;78:599–607.

    Article  CAS  PubMed  Google Scholar 

  65. Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2:67–108.

    Article  CAS  PubMed  Google Scholar 

  66. Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25:219–34.

    Article  CAS  PubMed  Google Scholar 

  67. Mains J, Wilson CG. The vitreous humor as a barrier to nanoparticle distribution. J Ocul Pharmacol Ther. 2013;29:143–50.

    Article  CAS  PubMed  Google Scholar 

  68. Mannermaa E, Vellonen K-S, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136–63.

    Article  CAS  PubMed  Google Scholar 

  69. Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res. 1985;40:687–96.

    Article  CAS  PubMed  Google Scholar 

  70. Maurice D. Practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17:393–401.

    Article  CAS  PubMed  Google Scholar 

  71. Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol. 2002;47:S41–52.

    Article  PubMed  Google Scholar 

  72. Maurice DM, Polgar J. Diffusion across the sclera. Exp Eye Res. 1977;25:577–82.

    Article  CAS  PubMed  Google Scholar 

  73. Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64:1628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Musch DC, Martin DF, Gordon JF, Davis MD, Kuppermann BD. Ganciclovir implant study group: treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. N Engl J Med. 1997;337:83–90.

    Article  CAS  PubMed  Google Scholar 

  75. Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79.

    Article  CAS  PubMed  Google Scholar 

  76. Olsen TW, Edelhauser HF, Lim JI, Geroski DH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36:1893–903.

    CAS  PubMed  Google Scholar 

  77. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol. 1996;121:181–9.

    Article  CAS  PubMed  Google Scholar 

  78. Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther. 2003;19:145–51.

    Article  CAS  PubMed  Google Scholar 

  79. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.

    Article  PubMed  Google Scholar 

  80. Patel SR, Lin ASP, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28:166–76.

    Article  CAS  PubMed  Google Scholar 

  81. Peptu CA, Popa M, Savin C, Popa RF, Ochiuz L. Modern drug delivery systems for targeting the posterior segment of the eye. Curr Pharm Des. 2015;21:6055–69.

    Article  CAS  PubMed  Google Scholar 

  82. Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29:875–912.

    Article  PubMed  Google Scholar 

  83. Pitkanen L, Ranta V-P, Moilanen H, Urtti A. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46:641–6.

    Article  PubMed  Google Scholar 

  84. Pitkanen L, Ranta V-P, Moilanen H, Urtti A. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium. Pharm Res. 2007;24:2063–70.

    Article  PubMed  CAS  Google Scholar 

  85. Pitkanen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20:576–83.

    Article  PubMed  Google Scholar 

  86. Prager TC, Chu H-H, Garcia CA, Anderson RE. The influence of vitreous change on vitreous fluorophotometry. Arch Ophthalmol. 1982;100:594–6.

    Article  CAS  PubMed  Google Scholar 

  87. Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.

    Article  CAS  PubMed  Google Scholar 

  88. Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1:99–114.

    Article  PubMed  Google Scholar 

  89. Ranta V-P, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–81.

    Article  CAS  PubMed  Google Scholar 

  90. Robinson MR, Lee SS, Kim H, Kim S, Lutz RJ, Galban C, Bungay PM, Yuan P, Wang NS, Kim J. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82:479–87.

    Article  CAS  PubMed  Google Scholar 

  91. Rudnick DE, Noonan JS, Geroski DH, Prausnitz MR, Edelhauser HF. The effect of intraocular pressure on human and rabbit scleral permeability. Invest Ophthalmol Vis Sci. 1999;40:3054–8.

    CAS  PubMed  Google Scholar 

  92. Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39:1221–6.

    CAS  PubMed  Google Scholar 

  93. Samaridou E, Alonso MJ. Nose-to-brain peptide delivery – The potential of nanotechnology. Bioorg Med Chem. 2018;26(10):2888–905.

    Article  CAS  Google Scholar 

  94. Sarraf D, Lee DA. The role of iontophoresis in ocular drug delivery. J Ocul Pharmacol Ther. 1994;10:69–81.

    Article  CAS  Google Scholar 

  95. Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010;5:75–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Silva GR d, Fialho SL, Siqueira RC, Jorge R, Janior C, da Silva A. Implants as drug delivery devices for the treatment of eye diseases. Braz J Pharm Sci. 2010;46:585–95.

    Article  Google Scholar 

  97. Srirangam R, Majumdar S. Transscleral drug delivery to the posterior segment of the eye: particulate and colloidal formulations and biopharmaceutical considerations. Kerala: Advances in Ocular Drug Delivery, Research Signpost; 2012. p. 33–6.

    Google Scholar 

  98. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16:270–7.

    Article  CAS  PubMed  Google Scholar 

  99. Topica A, De la Conjuntiva P. Ocular drug absorption by topical route. Role conjunctiva. Arch Soc Esp Oftalmol. 2008;83:683–6.

    Google Scholar 

  100. Tsuji A, Tamai I, Sasaki K. Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. Ophthalmic Res. 1988;20:31–43.

    Article  CAS  PubMed  Google Scholar 

  101. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  PubMed  Google Scholar 

  102. Urtti A, Rouhiainen H, Kaila T, Saano V. Controlled ocular timolol delivery: systemic absorption and intraocular pressure effects in humans. Pharm Res. 1994;11:1278–82.

    Article  CAS  PubMed  Google Scholar 

  103. Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37:435–56.

    Article  CAS  PubMed  Google Scholar 

  104. Urtti A, Salminen L, Miinalainen O. Systemic absorption of ocular pilocarpine is modified by polymer matrices. Int J Pharm. 1985;23:147–61.

    Article  CAS  Google Scholar 

  105. Wang J, Jiang A, Joshi M, Christoforidis J. Drug delivery implants in the treatment of vitreous inflammation. Mediat Inflamm. 2013;2013:780634.

    Google Scholar 

  106. Wu H, Chen TC. The effects of intravitreal ophthalmic medications on intraocular pressure. Semin Ophthalmol. 2009;24:100–5. Taylor & Francis

    Article  PubMed  Google Scholar 

  107. Yadav D, Kumar N. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int J Pharm. 2014;477:564–77.

    Article  CAS  PubMed  Google Scholar 

  108. Yadav D, Survase S, Kumar N. Dual coating of swellable and rupturable polymers on Glipizide loaded MCC pellets for pulsatile delivery: formulation design and in vitro evaluation. Int J Pharm. 2011;419:121–30.

    Article  CAS  PubMed  Google Scholar 

  109. Yadav K, Yadav D, Saroha K, Nanda S, Mathur P, Syan N. Proniosomal Gel: a provesicular approach for transdermal drug delivery. Pharm Lett. 2010;2:189–98.

    CAS  Google Scholar 

  110. Yadav K, Yadav D, Srivastava AK. Evaluation of hydrophilic, hydrophobic and waxy matrix excipients for sustained release tablets of Venlafaxine hydrochloride. Drug Dev Ind Pharm. 2013;39:1197–206.

    Article  CAS  PubMed  Google Scholar 

  111. Yadav K, Yadav D, Yadav M, Kumar S. Noscapine-loaded PLA nanoparticles: systematic study of effect of formulation and process variables on particle size, drug loading and entrapment efficiency. Pharm Nanotechnol. 2015;3:134–47.

    Article  CAS  Google Scholar 

  112. Yadav K, Yadav D, Yadav M, Kumar S. Noscapine loaded PLGA nanoparticles prepared using oil-in-water emulsion solvent evaporation method. J Nanopharm Drug Deliv. 2015;3:97–105.

    Article  Google Scholar 

  113. Yang C, Tirucherai GS, Mitra AK. Prodrug based optimal drug delivery via membrane transporter/receptor. Expert Opin Biol Ther. 2001;1:159–75.

    Article  CAS  PubMed  Google Scholar 

  114. Yang L. Nanotechnology-controlled drug delivery for treating bone diseases. In: Nanotechnology-enhanced Orthopedic materials. Oxford: Woodhead Publishing; 2015. p. 141–61.

    Chapter  Google Scholar 

  115. Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–21.

    Article  CAS  PubMed  Google Scholar 

  116. Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, D., Varma, L.T., Yadav, K. (2018). Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers, and Restrictions. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_3

Download citation

Publish with us

Policies and ethics