Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers, and Restrictions

  • Deepak Yadav
  • Lanke Tejesh Varma
  • Kiran Yadav


Posterior eye segment diseases have been a crucial health ailment for years due to the anatomical structure of the human eye and the challenges to deliver drugs to certain tissues in the eye. This chapter discusses the parts of the posterior segment and its functions along with the possible barriers to conventional treatments. Topical and systematic drug delivery systems are traditional ways of treating most ocular diseases. However, these are not as effective due to low absorption, degradation of the therapeutic agents via enzymes, and toxicity due to higher drug doses to compensate for the low permeability. On the other hand, intravitreal, transscleral diffusion and iontophoresis along with ocular implants are novel techniques that increase the bioavailability as well as precision of the drug delivery.


  1. 1.
    Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J Pharm Sci. 1987;76:583–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26:584–7.PubMedGoogle Scholar
  3. 3.
    Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules. 2007;12:373–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Ambati J, Adamis AP. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21:145–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A l, Weissgold DJ, Kim I, Delori F o C, Adamis AP. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41:1181–5.PubMedGoogle Scholar
  6. 6.
    Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25:2685–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Barocas VH, Balachandran RK. Sustained transscleral drug delivery. Expert Opin Drug Deliv. 2008;5:1–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Bazile DV. Nanotechnologies in drug delivery – an industrial perspective. J Drug Delivery Sci Technol. 2014;24:12–21.CrossRefGoogle Scholar
  10. 10.
    Behar-Cohen FF, BenEzra D, Einmahl S, Gurny R. Challenges of intraocular drug delivery. Eur Pharm Rev. 2001;6:35–40.Google Scholar
  11. 11.
    Bochot A l, Fattal E, Boutet V r, Deverre JR, Jeanny JC, Chacun H l, Couvreur P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci. 2002;43:253–9.PubMedGoogle Scholar
  12. 12.
    Bourges J-L, Bloquel C, Thomas A l, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar-Cohen F. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58:1182–202.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheruvu CPS, Ayalasomayajula SP, Kompella UB. Retinal delivery of sodium fluorescein, budesonide & celecoxib following subconjunctival injection. Drug Delivery Tech. 2003:3(6):62–7.Google Scholar
  14. 14.
    Cheruvu NPS, Kompella UB. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch’s layer. Invest Ophthalmol Vis Sci. 2006;47:4513–22.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cholkar K, Patel A, Dutt Vadlapudi A, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2:82–95.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chung YB, Han K, Nishiura A, Lee VHL. Ocular absorption of Pz-peptide and its effect on the ocular and systemic pharmacokinetics of topically applied drugs in the rabbit. Pharm Res. 1998;15:1882–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Colone M, Calcabrini A, Toccacieli L, Bozzuto G, Stringaro A, Gentile M, Cianfriglia M, Ciervo A, Caraglia M, Budillon A. The multidrug transporter P-glycoprotein: a mediator of melanoma invasion? J Invest Dermatol. 2008;128:957–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Conrad JM, Robinson JR. Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci. 1980;69:875–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev. 2008;60:757–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Conway BR. Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul. 2008;2:1–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23:279–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Cunha-Vaz JG. The blood retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973;323:466–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Dash A, Cudworth G. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40:1–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today. 2008;13:135–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Demetriades AM, Deering T, Liu H, Lu L, Gehlbach P, Packer JD, Gabhann FM, Popel AS, Wei LL, Campochiaro PA. Trans-scleral delivery of antiangiogenic proteins. J Ocul Pharmacol Ther. 2008;24:70–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2003;3:45–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metab. 2004;5:507–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Eljarrat-Binstock E, Peer J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci. 2004;45:2543–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Frucht-Pery J, Mechoulam H, Siganos CS, Ever-Hadani P, Shapiro M, Domb A. Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp Eye Res. 2004;78:745–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–4.PubMedGoogle Scholar
  33. 33.
    Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52:37–48.PubMedCrossRefGoogle Scholar
  34. 34.
    Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48:2230–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Gilbert JA, Simpson AE, Rudnick DE, Geroski DH, Aaberg TM, Edelhauser HF. Transscleral permeability and intraocular concentrations of cisplatin from a collagen matrix. J Control Release. 2003;89:409–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Gleeson JP, Ryan SM, Brayden DJ. Oral delivery strategies for nutraceuticals: delivery vehicles and absorption enhancers. Trends Food Sci Technol. 2016;53:90–101.CrossRefGoogle Scholar
  38. 38.
    Guidetti B, Azema J, Malet-Martino M, Martino R. Delivery systems for the treatment of proliferative vitreoretinopathy: materials, devices and colloidal carriers. Curr Drug Deliv. 2008;5:7–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res. 2011;6:317.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38:627–34.PubMedGoogle Scholar
  41. 41.
    Hayden B, Jockovich M-E, Murray TG, Kralinger MT, Voigt M, Hernandez E, Feuer W, Parel J-M. Iontophoretic delivery of carboplatin in a murine model of retinoblastoma. Invest Ophthalmol Vis Sci. 2006;47:3717–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52:5–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Hormann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions – a review. J Control Release. 2016;223:85–98.PubMedCrossRefGoogle Scholar
  44. 44.
    Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18:235–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci. 1983;72:1272–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Hughes PM, Olejnik O, Chang-Lin J-E, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57:2010–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–27.PubMedCrossRefGoogle Scholar
  48. 48.
    Jaffe GJ, Martin D, Callanan D, Pearson PA, Levy B, Comstock T, G. Fluocinolone Acetonide Uveitis Study. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four week results of a multicenter randomized clinical study. Ophthalmology. 2006;113:1020–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Jain R, Agarwal S, Majumdar S, Zhu X, Pal D, Mitra AK. Evasion of P-gp mediated cellular efflux and permeability enhancement of HIV-protease inhibitor saquinavir by prodrug modification. Int J Pharm. 2005;303:8–19.PubMedCrossRefGoogle Scholar
  50. 50.
    Jain R, Majumdar S, Nashed Y, Pal D, Mitra AK. Circumventing P-glycoprotein-mediated cellular efflux of quinidine by prodrug derivatization. Mol Pharm. 2004;1:290–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaiser PK, Goldberg MF, Davis AA, Anecortave Acetate Clinical Study G. Posterior juxtascleral depot administration of anecortave acetate. Surv Ophthalmol. 2007;52:S62–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Kao JC, Geroski DH, Edelhauser HF. Transscleral permeability of fluorescent-labeled antibiotics. J Ocul Pharmacol Ther. 2005;21:1–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaufman PL, Adler FH, Levin LA, Alm A. Adler’s physiology of the eye. Edinburgh: Elsevier Health Sciences; 2011.Google Scholar
  55. 55.
    Kaur N, Yadav K, Garg R, Saroha K, Yadav D. Formulation and In Vitro characterization of Ketoconazole span 80 based Transfersomes gel, its comparison with Liposomal gel and evaluation of AAntimicrobial activity. J Bionanosci. 2016;10:191–204.CrossRefGoogle Scholar
  56. 56.
    Kiernan DF, Lim JI. Topical drug delivery for posterior segment disease. Retina Today. 2010;5:48–51.Google Scholar
  57. 57.
    Kim ES, Durairaj C, Kadam RS, Lee SJ, Mo Y, Geroski DH, Kompella UB, Edelhauser HF. Human scleral diffusion of anticancer drugs from solution and nanoparticle formulation. Pharm Res. 2009;26:1155–61.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, Wang NS, Csaky KG. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2004;45:2722–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39:244–54.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release. 2014;190:172–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Lalwani GA, Rosenfeld PJ, Fung AE, Dubovy SR, Michels S, Feuer W, Davis JL, Flynn HW, Esquiabro M. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol. 2009;148:43–58. e1PubMedCrossRefGoogle Scholar
  62. 62.
    Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16:39–43.CrossRefGoogle Scholar
  63. 63.
    Laude A, Tan LE, Wilson CG, Lascaratos G, Elashry M, Aslam T, Patton N, Dhillon B. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 2010;29:466–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Lee S-B, Geroski DH, Prausnitz MR, Edelhauser HF. Drug delivery through the sclera: effects of thickness, hydration, and sustained release systems. Exp Eye Res. 2004;78:599–607.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2:67–108.PubMedCrossRefGoogle Scholar
  66. 66.
    Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25:219–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Mains J, Wilson CG. The vitreous humor as a barrier to nanoparticle distribution. J Ocul Pharmacol Ther. 2013;29:143–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Mannermaa E, Vellonen K-S, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res. 1985;40:687–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Maurice D. Practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17:393–401.PubMedCrossRefGoogle Scholar
  71. 71.
    Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol. 2002;47:S41–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Maurice DM, Polgar J. Diffusion across the sclera. Exp Eye Res. 1977;25:577–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64:1628–38.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Musch DC, Martin DF, Gordon JF, Davis MD, Kuppermann BD. Ganciclovir implant study group: treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. N Engl J Med. 1997;337:83–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79.PubMedCrossRefGoogle Scholar
  76. 76.
    Olsen TW, Edelhauser HF, Lim JI, Geroski DH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36:1893–903.PubMedGoogle Scholar
  77. 77.
    Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol. 1996;121:181–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther. 2003;19:145–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Patel SR, Lin ASP, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28:166–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Peptu CA, Popa M, Savin C, Popa RF, Ochiuz L. Modern drug delivery systems for targeting the posterior segment of the eye. Curr Pharm Des. 2015;21:6055–69.PubMedCrossRefGoogle Scholar
  82. 82.
    Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29:875–912.PubMedCrossRefGoogle Scholar
  83. 83.
    Pitkanen L, Ranta V-P, Moilanen H, Urtti A. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46:641–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Pitkanen L, Ranta V-P, Moilanen H, Urtti A. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium. Pharm Res. 2007;24:2063–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Pitkanen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20:576–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Prager TC, Chu H-H, Garcia CA, Anderson RE. The influence of vitreous change on vitreous fluorophotometry. Arch Ophthalmol. 1982;100:594–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.PubMedCrossRefGoogle Scholar
  88. 88.
    Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1:99–114.PubMedCrossRefGoogle Scholar
  89. 89.
    Ranta V-P, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Robinson MR, Lee SS, Kim H, Kim S, Lutz RJ, Galban C, Bungay PM, Yuan P, Wang NS, Kim J. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82:479–87.PubMedCrossRefGoogle Scholar
  91. 91.
    Rudnick DE, Noonan JS, Geroski DH, Prausnitz MR, Edelhauser HF. The effect of intraocular pressure on human and rabbit scleral permeability. Invest Ophthalmol Vis Sci. 1999;40:3054–8.PubMedGoogle Scholar
  92. 92.
    Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39:1221–6.PubMedGoogle Scholar
  93. 93.
    Samaridou E, Alonso MJ. Nose-to-brain peptide delivery – The potential of nanotechnology. Bioorg Med Chem. 2018;26(10):2888–905.CrossRefGoogle Scholar
  94. 94.
    Sarraf D, Lee DA. The role of iontophoresis in ocular drug delivery. J Ocul Pharmacol Ther. 1994;10:69–81.CrossRefGoogle Scholar
  95. 95.
    Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010;5:75–93.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Silva GR d, Fialho SL, Siqueira RC, Jorge R, Janior C, da Silva A. Implants as drug delivery devices for the treatment of eye diseases. Braz J Pharm Sci. 2010;46:585–95.CrossRefGoogle Scholar
  97. 97.
    Srirangam R, Majumdar S. Transscleral drug delivery to the posterior segment of the eye: particulate and colloidal formulations and biopharmaceutical considerations. Kerala: Advances in Ocular Drug Delivery, Research Signpost; 2012. p. 33–6.Google Scholar
  98. 98.
    Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16:270–7.CrossRefPubMedGoogle Scholar
  99. 99.
    Topica A, De la Conjuntiva P. Ocular drug absorption by topical route. Role conjunctiva. Arch Soc Esp Oftalmol. 2008;83:683–6.Google Scholar
  100. 100.
    Tsuji A, Tamai I, Sasaki K. Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. Ophthalmic Res. 1988;20:31–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Urtti A, Rouhiainen H, Kaila T, Saano V. Controlled ocular timolol delivery: systemic absorption and intraocular pressure effects in humans. Pharm Res. 1994;11:1278–82.PubMedCrossRefGoogle Scholar
  103. 103.
    Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37:435–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Urtti A, Salminen L, Miinalainen O. Systemic absorption of ocular pilocarpine is modified by polymer matrices. Int J Pharm. 1985;23:147–61.CrossRefGoogle Scholar
  105. 105.
    Wang J, Jiang A, Joshi M, Christoforidis J. Drug delivery implants in the treatment of vitreous inflammation. Mediat Inflamm. 2013;2013:780634.Google Scholar
  106. 106.
    Wu H, Chen TC. The effects of intravitreal ophthalmic medications on intraocular pressure. Semin Ophthalmol. 2009;24:100–5. Taylor & FrancisPubMedCrossRefGoogle Scholar
  107. 107.
    Yadav D, Kumar N. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int J Pharm. 2014;477:564–77.PubMedCrossRefGoogle Scholar
  108. 108.
    Yadav D, Survase S, Kumar N. Dual coating of swellable and rupturable polymers on Glipizide loaded MCC pellets for pulsatile delivery: formulation design and in vitro evaluation. Int J Pharm. 2011;419:121–30.PubMedCrossRefGoogle Scholar
  109. 109.
    Yadav K, Yadav D, Saroha K, Nanda S, Mathur P, Syan N. Proniosomal Gel: a provesicular approach for transdermal drug delivery. Pharm Lett. 2010;2:189–98.Google Scholar
  110. 110.
    Yadav K, Yadav D, Srivastava AK. Evaluation of hydrophilic, hydrophobic and waxy matrix excipients for sustained release tablets of Venlafaxine hydrochloride. Drug Dev Ind Pharm. 2013;39:1197–206.PubMedCrossRefGoogle Scholar
  111. 111.
    Yadav K, Yadav D, Yadav M, Kumar S. Noscapine-loaded PLA nanoparticles: systematic study of effect of formulation and process variables on particle size, drug loading and entrapment efficiency. Pharm Nanotechnol. 2015;3:134–47.CrossRefGoogle Scholar
  112. 112.
    Yadav K, Yadav D, Yadav M, Kumar S. Noscapine loaded PLGA nanoparticles prepared using oil-in-water emulsion solvent evaporation method. J Nanopharm Drug Deliv. 2015;3:97–105.CrossRefGoogle Scholar
  113. 113.
    Yang C, Tirucherai GS, Mitra AK. Prodrug based optimal drug delivery via membrane transporter/receptor. Expert Opin Biol Ther. 2001;1:159–75.PubMedCrossRefGoogle Scholar
  114. 114.
    Yang L. Nanotechnology-controlled drug delivery for treating bone diseases. In: Nanotechnology-enhanced Orthopedic materials. Oxford: Woodhead Publishing; 2015. p. 141–61.CrossRefGoogle Scholar
  115. 115.
    Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–21.PubMedCrossRefGoogle Scholar
  116. 116.
    Yin Z, Kuang D, Wang S, Zheng Z, Yadavalli VK, Lu S. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018;106:48–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Deepak Yadav
    • 1
    • 2
  • Lanke Tejesh Varma
    • 1
  • Kiran Yadav
    • 3
  1. 1.Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER), ITI CompoundRaebareliIndia
  2. 2.School of Pharmacy, Hadassah Medical Centre, The Hebrew University of Jerusalem, Ein Kerem CampusJerusalemIsrael
  3. 3.Institute of Pharmaceutical SciencesKurukshetra UniversityKurukshetraIndia

Personalised recommendations