Ocular Delivery of Peptides and Proteins

  • Rajiv DahiyaEmail author
  • Sunita Dahiya


The delivery of protein and peptide therapeutics through ocular route requires considerable knowledge and understanding about eye’s anatomy and physiology. Although this delivery route has high potency and specificity, it exhibits difficulty in absorption through barriers resulting in lower bioavailability as well as crucial stability issues. Due to the complications associated with the most common injectable route for the peptide and protein delivery, there is a surge for the noninvasive route such as ocular which include intravitreal and periocular route. Newer techniques for delivery of these macromolecules involve targeting transporters or receptors to enhance specificity, while approaches such as nanocarriers, prodrug, mucoadhesion, and permeation enhancers have been employed to attain enhanced bioavailability. This chapter addresses pros and cons of ocular delivery of peptides and proteins, significant features of their chemistry, potential and challenges associated with their local and systemic delivery, as well as different ways to attain better protein bioavailability and stability.


  1. 1.
    Dahiya S, Pathak K. Physicochemical characterization and dissolution enhancement of aceclofenac-hydroxypropyl beta-cyclodextrin binary systems. PDA J Pharm Sci Technol. 2006;60(6):378–88.PubMedGoogle Scholar
  2. 2.
    Tripathi M, Radhika PR, Sivakumar T. Formulation and evaluation of glipizide hollow microballoons for floating drug delivery. Bull Pharm Res. 2011;1(1):67–74.Google Scholar
  3. 3.
    Pathak D, Dahiya S, Pathak K. Solid dispersion of meloxicam: factorially designed dosage form for geriatric population. Acta Pharma. 2008;58(1):99–110.CrossRefGoogle Scholar
  4. 4.
    Dahiya S, Tyagi L. Preparation and evaluation of oxytetracycline hydrochloride microbeads for delayed release. Pak J Pharm Sci. 2008;21(2):103–8.PubMedGoogle Scholar
  5. 5.
    Verma S, Kumar V, Jyoti, Mishra DN. Formulation, evaluation and optimization of mucoadhesive microspheres of acyclovir. Bull Pharm Res. 2014;4(1):14–20.Google Scholar
  6. 6.
    Dahiya S, Pathak K, Sharma R. Development of extended release coevaporates and coprecipitates of promethazine HCl with acrylic polymers: formulation considerations. Chem Pharm Bull (Tokyo). 2008;56(4):504–8.CrossRefGoogle Scholar
  7. 7.
    Dahiya S, Pathak K. Influence of amorphous cyclodextrin derivatives on aceclofenac release from directly compressible tablets. Pharmazie. 2007;62(4):278–83.PubMedGoogle Scholar
  8. 8.
    Dahiya S, Gupta ON. Formulation and in vitro evaluation of metoprolol tartrate microspheres. Bull Pharm Res. 2011;1(1):31–9.Google Scholar
  9. 9.
    Patel A, Patel M, Yang X, Mitra AK. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21(11):1102–20.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Das S, Bhaumik A. Protein & peptide drug delivery: a fundamental novel approach and future perspective. World J Pharm Pharmaceut Sci. 2016;5(9):763–76.Google Scholar
  11. 11.
    Vyas SP, Paliwal R, Paliwal SR. Ocular delivery of peptides and proteins. In: Van Der Walle CF, editor. Peptide and protein delivery. London: Academic Press, Elsevier; 2011. p. 87–103.CrossRefGoogle Scholar
  12. 12.
    Gharge V, Pawar P. Recent trends in chitosan based nanotechnology: a reference to ocular drug delivery system. Int J Ophthal Visual Sci. 2017;2(4):98–105.Google Scholar
  13. 13.
    Srinivasan R, Jain SK. Insulin delivery through the ocular route. Drug Deliv. 1998;5(1):53–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Xuan B, McClellan DA, Moore R, Chiou GC. Alternative delivery of insulin via eye drops. Diabetes Technol Ther. 2005;7(5):695–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee Y-C, Simamora P, Pinsuwan S, Yalkowsky SH. Review on the systemic delivery of insulin via the ocular route. Int J Pharm. 2002;233(1–2):1–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Loftsson T, Sigurdsson HH, Konrádsdóttir F, Gísladóttir S, Jansook P, Stefánsson E. Topical drug delivery to the posterior segment of the eye: anatomical and physiological considerations. Pharmazie. 2008;63(3):171–9.PubMedGoogle Scholar
  17. 17.
    Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5–6):270–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Joseph RR, Venkatraman SS. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond). 2017;12(6):683–702.CrossRefGoogle Scholar
  19. 19.
    Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1(1):99–114.PubMedCrossRefGoogle Scholar
  20. 20.
    Addo RT. Ocular drug delivery: advances, challenges and applications. Switzerland: Springer; 2016. p. 1–74.CrossRefGoogle Scholar
  21. 21.
    Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–67.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, Warsi MH, Ahmad FJ. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24(4):413–28.PubMedCrossRefGoogle Scholar
  23. 23.
    Jitendra SPK, Bansal S, Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci. 2011;73(4):367–75.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wearley LL. Recent progress in protein and peptide delivery by noninvasive routes. Crit Rev Ther Drug Carrier Syst. 1991;8(4):331–94.PubMedGoogle Scholar
  25. 25.
    Anand BS, Dey S, Mitra AK. Current prodrug strategies via membrane transporters/receptors. Expert Opin Biol Ther. 2002;2(6):607–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthal Visual Sci. 1997;38(3):627–34.Google Scholar
  27. 27.
    Muralidhar P, Babajan S, Bhargav E, Sowmya C. An overview: protein and peptide based drug delivery. Int J Pharm Sci Rev Res. 2017;2(1):169–78.Google Scholar
  28. 28.
    Ratnaparkhi MP, Chaudhari SP, Pandya VA. Peptides and proteins in pharmaceuticals. Int J Curr Pharm Res. 2011;3(2):1–9.Google Scholar
  29. 29.
    Gill MK. Biopharmaceuticals. New York: Britannica Education Publishing; 2016.Google Scholar
  30. 30.
    Wrone-Smith T, Nickoloff BJ. Cyclosporin A. In: Burg G, Dummer RG, editors. Strategies for immunointerventions in dermatology. Berlin, Heidelberg: Springer; 1997.Google Scholar
  31. 31.
    Janeway CA Jr, Travers P, Walport M. Immunobiology: the immune system in health and disease. 5th ed. New York: Garland Science; 2001.Google Scholar
  32. 32.
    Makowski GS. Advances in clinical chemistry, vol. 56. London: Academic Press (Elsevier); 2012.Google Scholar
  33. 33.
    Henning RJ, Sawmiller DR. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res. 2001;49(1):27–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev. 2004;56(2):249–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Dahiya R, Singh S, Sharma A, Chennupati SV, Maharaj S. First total synthesis and biological screening of a proline-rich cyclopeptide from a Caribbean marine sponge. Mar Drugs. 2016;14(12):228.PubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dahiya R, Gautam H. Total synthesis and antimicrobial activity of a natural cycloheptapeptide of marine origin. Mar Drugs. 2010;8(8):2384–94.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dahiya R, Gautam H. Synthesis, characterization and biological evaluation of cyclomontanin D. Afr J Pharm Pharmacol. 2011;5(3):447–53.CrossRefGoogle Scholar
  38. 38.
    Lax R. The future of peptide development in the pharmaceutical industry. PharManufacturing Int Pept Rev. 2010:10–5.Google Scholar
  39. 39.
    Kumar S, Dahiya R, Khokra SL, Mourya R, Chennupati SV, Maharaj S. Total synthesis and pharmacological investigation of cordyheptapeptide A. Molecules. 2017;22(6):682.CrossRefGoogle Scholar
  40. 40.
    Dahiya R, Kumar A, Gupta R. Synthesis, cytotoxic and antimicrobial screening of a proline-rich cyclopolypeptide. Chem Pharm Bull (Tokyo). 2009;57(2):214–7.CrossRefGoogle Scholar
  41. 41.
    Dahiya R. Total synthesis and biological potential of psammosilenin A. Arch Pharm (Weinheim). 2008;341(8):502–9.CrossRefGoogle Scholar
  42. 42.
    Dahiya R, Kumar A. Synthetic and biological studies on a cyclopolypeptide of plant origin. J Zhejiang Univ Sci B. 2008;9(5):391–400.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dahiya R. Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. Acta Pol Pharm. 2007;64(6):509–16.PubMedGoogle Scholar
  44. 44.
    Dahiya R. Synthetic and pharmacological studies on longicalycinin A. Pak J Pharm Sci. 2007;20(4):317–23.PubMedGoogle Scholar
  45. 45.
    Giltrap AM, Haeckl FPJ, Kurita KL, Linington RG, Payne RJ. Total synthesis of skyllamycins A-C. Chemistry. 2017;23(60):15046–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Gu W, Silverman RB. Solid-phase total synthesis of scytalidamide A. J Org Chem. 2003;68(23):8774–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Bourel-Bonnet L, Rao KV, Hamann MT, Ganesan A. Solid-phase total synthesis of kahalalide A and related analogues. J Med Chem. 2005;48(5):1330–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shah ZA, Jabeen A, Soomro S, Mesaik MA, Choudhary MI, Shaheen F. Solid-phase total synthesis of cyclic peptide brachystemin A and its immunomodulating activity. Turk J Chem. 2015;39:930–8.CrossRefGoogle Scholar
  49. 49.
    Dahiya R, Kaur K. Synthetic and biological studies on natural cyclic heptapeptide: segetalin E. Arch Pharm Res. 2007;30(11):1380–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Dahiya R, Kaur K. Synthesis and pharmacological investigation of segetalin C as a novel antifungal and cytotoxic agent. Arzneimittelforschung. 2008;58(1):29–34.PubMedGoogle Scholar
  51. 51.
    Dahiya R, Gautam H. Solution phase synthesis and bioevaluation of cordyheptapeptide B. Bull Pharm Res. 2011;1(1):1–10.Google Scholar
  52. 52.
    Dahiya R, Pathak D, Himaja M, Bhatt S. First total synthesis and biological screening of hymenamide E. Acta Pharma. 2006;56(4):399–415.Google Scholar
  53. 53.
    Dahiya R. Synthesis, characterization and biological evaluation of a glycine-rich peptide – cherimolacyclopeptide E. J Chil Chem Soc. 2007;52(3):1224–9.CrossRefGoogle Scholar
  54. 54.
    Dahiya R. Synthesis, spectroscopic and biological investigation of cyclic octapeptide: cherimolacyclopeptide G. Turk J Chem. 2008;32(2):205–15.Google Scholar
  55. 55.
    Dahiya R. Synthetic studies on a cyclic hexapeptide from Dianthus superbus. Chem Pap. 2008;62(5):527–35.CrossRefGoogle Scholar
  56. 56.
    Dahiya R. Synthesis and in vitro cytotoxic activity of a natural peptide of plant origin. J Iran Chem Soc. 2008;5(3):445–52.CrossRefGoogle Scholar
  57. 57.
    Dahiya R, Maheshwari M, Kumar A. Toward the synthesis and biological evaluation of hirsutide. Monatsh Chem. 2009;140(1):121–7.CrossRefGoogle Scholar
  58. 58.
    Dahiya R, Gautam H. Synthesis and pharmacological studies on a cyclooligopeptide from marine bacteria. Chin J Chem. 2011;29(9):1911–6.CrossRefGoogle Scholar
  59. 59.
    Dahiya R, Singh S. First total synthesis and biological potential of a heptacyclopeptide of plant origin. Chin J Chem. 2016;34(11):1158–64.CrossRefGoogle Scholar
  60. 60.
    Dahiya R, Singh S. Synthesis, characterization, and biological activity studies on fanlizhicyclopeptide A. Iran J Pharm Res. 2017;16(3):1178–86.Google Scholar
  61. 61.
    Dahiya R, Singh S, Kaur K, Kaur R. Total synthesis of a natural cyclooligopeptide from fruits of sugar-apples. Bull Pharm Res. 2017;7(3):151.Google Scholar
  62. 62.
    Marcucci E, Tulla-Puche J, Albericio F. Solid-phase synthesis of NMe-IB-01212, a highly N-methylated cyclic peptide. Org Lett. 2012;14(2):612–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Dahiya R, Singh S. Synthesis, characterization and biological screening of diandrine A. Acta Pol Pharm. 2017;74(3):873–80.PubMedGoogle Scholar
  64. 64.
    Dahiya R, Singh S. Toward the synthesis and pharmacological screening of a natural cycloheptapeptide of plant origin. Nat Prod Commun. 2017;12(3):379–83.Google Scholar
  65. 65.
    Nielsen DS, Hoang HN, Lohman RJ, Diness F, Fairlie DP. Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A. Org Lett. 2012;14(22):5720–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Wu X, Stockdill JL, Wang P, Danishefsky SJ. Total synthesis of cyclosporine: access to N-methylated peptides via isonitrile coupling reactions. J Am Chem Soc. 2010;132(12):4098–100.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Thompson C, Ge M, Kahne D. Synthesis of vancomycin from the aglycon. J Am Chem Soc. 1999;121(6):1237–44.CrossRefGoogle Scholar
  68. 68.
    Bodanszky M, Klausner YS, Lin CY, Mutt V, Said SI. Synthesis of the vasoactive intestinal peptide (VIP). J Am Chem Soc. 1974;96(15):4973–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Halban PA. Structural domains and molecular life styles of insulin and its precursors in the pancreatic beta cell. Diabetologia. 1991;34:767–78.PubMedCrossRefGoogle Scholar
  70. 70.
    Dey S, Mitra AK. Transporters and receptors in ocular drug delivery: opportunities and challenges. Exp Opin Drug Deliv. 2005;2:201–4.CrossRefGoogle Scholar
  71. 71.
    Sadeghi AM, Dorkoosh FA, Avadi MR, Saadat P, Rafiee-Tehrani M, Junginger HE. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm. 2008;355(1–2):299–306.PubMedCrossRefGoogle Scholar
  72. 72.
    Dragan S, Cristea M, Luca C, Simionescu BC. Polyelectrolyte complexes. 1. Synthesis and characterisation of some insoluble polyanionepolycation complexes. J Polym Sci Polym Chem. 1996;34(17):3485–94.CrossRefGoogle Scholar
  73. 73.
    Grotta JC. Current medical and surgical therapy for cerebrovascular disease. N Engl J Med. 1987;317(24):1505–16.PubMedCrossRefGoogle Scholar
  74. 74.
    Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug strategies in ocular drug delivery. Med Chem. 2012;8(4):753–68.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Järvinen T, Niemi R. Prodrug approaches to ophthalmic drug delivery. In: Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW, editors. Prodrugs. Biotechnology: pharmaceutical aspects, vol. V. New York: Springer; 2007. p. 126–46.Google Scholar
  76. 76.
    Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mathiowitz E, Chickering DE III, Lehr C-M. Bioadhesive drug delivery systems: fundamentals, novel approaches and development, vol. 98. NewYork: Marcel Dekker Inc.; 1999. p. 343.CrossRefGoogle Scholar
  78. 78.
    Khobragade PK, Puranik PK. Chitosan: a mucoadhesive polymer. World J Pharm Pharmaceut Sci. 2015;4(04):1829–47.Google Scholar
  79. 79.
    Pescina S, Sonvico F, Santi P, Nicoli S. Therapeutics and carriers: the dual role of proteins in nanoparticles for ocular delivery. Curr Top Med Chem. 2015;15(4):369–85.PubMedCrossRefGoogle Scholar
  80. 80.
    De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224(1–2):159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Alonso MJ, Sánchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol. 2003;55(11):1451–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Pleyer U, Elkins B, Rückert D, Lutz S, Grammer J, Chou J, Schmidt KH, Mondino BJ. Ocular absorption of cyclosporine A from liposomes incorporated into collagen shields. Curr Eye Res. 1994;13(3):177–81.PubMedCrossRefGoogle Scholar
  83. 83.
    Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, Caramella C. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364(1):76–86.PubMedCrossRefGoogle Scholar
  84. 84.
    Gökçe EH, Sandri G, Eğrilmez S, Bonferoni MC, Güneri T, Caramella C. Cyclosporinea-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34(11):996–1003.PubMedCrossRefGoogle Scholar
  85. 85.
    Prokai L, Prokai-Tatrai K. Peptide transport and delivery into the central nervous system. Basel: Birkha¨user-Verlag; 2003.CrossRefGoogle Scholar
  86. 86.
    Lajavardi L, Camelo S, Agnely F, Luo W, Goldenberg B, Naud MC, Behar-Cohen F, de Kozak Y, Bochot A. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release. 2009;139(1):22–30.PubMedCrossRefGoogle Scholar
  87. 87.
    Kaur IP, Batra A. Chapter 25. Ocular penetration enhancers. In: Touitou E, Barry BW, editors. Enhancement in drug delivery. Boca Raton: Taylor and Francis Group, CRC Press; 2006.Google Scholar
  88. 88.
    Newton C, Gebhardt BM, Kaufman HE. Topically applied cyclosporine in zone prolongs corneal allograft survival. Invest Ophthalmol Vis Sci. 1988;29:208–15.PubMedGoogle Scholar
  89. 89.
    Morimoto K, Nakai T, Morisaka K. Evaluation of permeability enhancement of hydrophilic compounds and macromolecular compounds by bile salts through rabbit corneas in-vitro. J Pharm Pharmacol. 1987;39(2):124–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Chiou GCY, Shen ZF, Zheng YQ, Chen YJ. Enhancement of systemic delivery of peptides drug via ocular route with surfactants. Drug Dev Res. 1988;27:177–83.CrossRefGoogle Scholar
  91. 91.
    Yamamoto A, Luo AM, Dodda-Kashi S, Lee VH. The ocular route for systemic insulin delivery in the albino rabbit. J Pharmacol Exp Ther. 1989;249:249–55.PubMedGoogle Scholar
  92. 92.
    Wang Y, Lin H, Lin S, Qu J, Xiao J, Huang Y, Xiao Y, Fu X, Yang Y, Li X. Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia–reperfusion injury in rats. J Cell Mol Med. 2010;14(7):1998–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lee KY, Yuk SH. Polymeric protein delivery systems. Prog Polym Sci. 2007;32(7):669–97.CrossRefGoogle Scholar
  94. 94.
    Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina. 2009;29(5):699–703.PubMedCrossRefGoogle Scholar
  95. 95.
    Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57(2):207–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Nair R, Chakrapani M, Kaza R. Preparation and evaluation of vancomycin microemulsion for ocular drug delivery. Drug Deliv Lett. 2012;2(1):26–34.Google Scholar
  97. 97.
    Yousry C, Fahmy RH, Essam T, El-Laithy HM, Elkheshen SA. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev Ind Pharm. 2016;42(11):1752–62.PubMedCrossRefGoogle Scholar
  98. 98.
    Khangtragool A, Ausayakhun S, Leesawat P, Laokul C, Molloy R. Chitosan as an ocular drug delivery vehicle for vancomycin. J Appl Polym Sci. 2011;122(5):3160–7.CrossRefGoogle Scholar
  99. 99.
    Ambati J, Gragoudas ES, Miller JW, You TT, Miyamoto K, Delori FC, Adamis AP. Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci. 2000;41(5):1186–91.PubMedGoogle Scholar
  100. 100.
    Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Camelo S, Lajavardi L, Bochot A, Goldenberg B, Naud MC, Brunel N, Lescure B, Klein C, Fattal E, Behar-Cohen F, de Kozak Y. Protective effect of intravitreal injection of vasoactive intestinal peptide-loaded liposomes on experimental autoimmune uveoretinitis. J Ocul Pharmacol Ther. 2009;25(1):9–21.PubMedCrossRefGoogle Scholar
  102. 102.
    Nell B, Walde I. Posterior segment diseases. Equine Vet J Suppl. 2010;37:69–79.CrossRefGoogle Scholar
  103. 103.
    Sheardown H, Saltzman WM. Novel drug delivery systems for posterior segment ocular disease. In: Tombrain-Tink J, Barnstable CJ, editors. Ocular angiogenesis. Opthalmology research. New York: Humana Press; 2006.Google Scholar
  104. 104.
    Ozaki T, Nakazawa M, Yamashita T, Ishiguro S. Delivery of topically applied calpain inhibitory peptide to the posterior segment of the rat eye. PLoS One. 2015;10(6):e0130986.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ghosh JG, Nguyen AA, Bigelow CE, Poor S, Qiu Y, Rangaswamy N, Ornberg R, Jackson B, Mak H, Ezell T, Kenanova V, de la Cruz E, Carrion A, Etemad-Gilbertson B, Caro RG, Zhu K, George V, Bai J, Sharma-Nahar R, Shen S, Wang Y, Subramanian KK, Fassbender E, Maker M, Hanks S, Vrouvlianis J, Leehy B, Long D, Prentiss M, Kansara V, Jaffee B, Dryja TP, Roguska M. Long-acting protein drugs for the treatment of ocular diseases. Nat Commun. 2017;8:14837.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, Zhang L, Jiang S, Jia H, Xiong Y, Zhang R, Huang Y, Chu CC, Tian W. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    de Oliveira Dias JR, de Andrade GC, Novais EA, Farah ME, Rodrigues EB. Fusion proteins for treatment of retinal diseases: aflibercept, ziv-aflibercept, and conbercept. Int J Ret Vitr. 2016;2:3.CrossRefGoogle Scholar
  108. 108.
    McCormack PL, Keam SJ. Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs. 2008;68(4):487–506.PubMedCrossRefGoogle Scholar
  109. 109.
    Kuppermann BD. A new approach to the rhino in the room. Catar Refr Surg Today. 2014:57–8.Google Scholar
  110. 110.
    Lu X, Sun X. Profile of conbercept in the treatment of neovascular age-related macular degeneration. Drug Des Devel Ther. 2015;9:2311–20.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4:298–306.PubMedCrossRefGoogle Scholar
  112. 112.
    Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Bischof JC, He X. Thermal stability of proteins. Ann N Y Acad Sci. 2005;1066:12–33.PubMedCrossRefGoogle Scholar
  114. 114.
    Moreno MR, Tabitha TS, Nirmal J, Radhakrishnan K, Yee CH, Lim S, Venkatraman S, Agrawal R. Study of stability and biophysical characterization of ranibizumab and aflibercept. Eur J Pharm Biopharm. 2016;108:156–67.PubMedCrossRefGoogle Scholar
  115. 115.
    Bennett L. Ocular delivery of proteins and peptides. In: Addo R, editor. Ocular drug delivery: advances, challenges and applications. Basel, Switzerland: Springer; 2016.Google Scholar
  116. 116.
    Yenice I, Mocan MC, Palaska E, Bochot A, Bilensoy E, Vural I, Irkeç M, Hincal AA. Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res. 2008;87(3):162–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Aksungur P, Demirbilek M, Denkbas EB, Vandervoort J, Ludwig A, Unlü N. Development and characterization of Cyclosporin A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release. 2011;151(3):286–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmacy, Faculty of Medical SciencesThe University of the West IndiesSt. Augustine, West IndiesTrinidad and Tobago
  2. 2.Department of Pharmaceutical Sciences, School of PharmacyUniversity of Puerto Rico, Medical Sciences CampusSan JuanPuerto Rico

Personalised recommendations