Thermoresponsive Gel Drug Delivery for Retina and Posterior Segment Disease

  • Komal Parmar
  • Jayvadan K. Patel
  • Deepak Bhatia
  • Yashwant V. Pathak


Significant melioration has been done in the optimization of drug delivery to target the tissues in the eye and gain maximum therapeutic efficacy with the drug doses within the organ. Thermoresponsive drug delivery systems propose immense prospective among their equivalents due to their flexibility in design, targeting ability and in situ temperature sensible phase transitions. The approach can be found advantageous for specific applications as it does not require organic solvents in formulation, copolymerization agents for gel formation or any externally applied stimuli for gelation. Thus, this chapter focuses on the emerging thermoresponsive gel technology for drug delivery to anterior and posterior segment of eye disease. This review examines the characteristics of this system including design, assessment and optimization and merits and limitations of thermoresponsive gels for ocular therapy. Future potential of the system for targeted and sustained drug delivery of drugs to ocular part is also presented.


Thermoresponsive gels Retinal delivery Target delivery Posterior segment 


  1. 1.
    Ambati J, Adamis AP. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21:145–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Ambati J, Gragoudas ES, Miller JW, et al. Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci. 2000;41:1186–91.PubMedGoogle Scholar
  3. 3.
    Ayalasomayajula SP, Ashton P, Kompella UB. Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α-induced angiogenesis in chick chorioallantoic membrane (CAM). J Ocul Pharmacol Ther. 2009;25(2):97–103.PubMedCrossRefGoogle Scholar
  4. 4.
    Barar J, Aghanejad A, Fathi M, et al. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts. 2016;6(1):49–67.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bekhradnia S, Zhu K, Knudsen KD, et al. Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimer–poly(N-isopropylacrylamide) hydrogels. J Mater Sci. 2014;49:6102–10.CrossRefGoogle Scholar
  6. 6.
    Bhattarai N, Matsen FA, Zhang M. PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol Biosci. 2005;5:107–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv. 2008;5(10):1077–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Bobbala S, Tamboli V, McDowell A, et al. Novel injectable pentablock copolymer based thermoresponsive hydrogels for sustained release vaccines. AAPS J. 2016;18(1):261–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Bromberg LE, Ron ES. Temperature responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev. 1998;31:197–221.PubMedCrossRefGoogle Scholar
  10. 10.
    Cabana A, Ait-Kadi A, Juhasz J. Study of the gelation process of polyethylene oxide-polypropylene oxide-polyethylene oxide copolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci. 1997;190:307–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Cao Y, Zhang C, Shen W, et al. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release. 2007;120:186–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Coughlan DC, Corrigan OI. Release kinetics of benzoic acid and its sodium salt from a series of poly(N-Isopropylacrylamide) matrices with various percentage crosslinking. J Pharm Sci. 2008;97(1):318–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Coughlan DC, Quilty FP, Corrigan OI. Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. J Control Release. 2004;98:97–114.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014;10:1575–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Díaz AG, Quinteros DA, Gutiérrez SE, et al. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis. Vet Immunol Immunopathol. 2016;178:50–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Duvvuri S, Janoria KG, Pal D, et al. Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther. 2007;23(3):264–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Escobar-Chávez JJ, López-Cervantes M, Naïk A, et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9(3):339–58.PubMedGoogle Scholar
  18. 18.
    Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27(7):787–94.CrossRefGoogle Scholar
  19. 19.
    Feil H, Bae YH, Feijen J, et al. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules. 1993;26:2496–500.CrossRefGoogle Scholar
  20. 20.
    Pacella F, Ferraresi AF, Turchetti P, et al. Intravitreal injection of Ozurdex® implant in patients with persistent diabetic macular edema, with six-month follow-up. Ophthalmol Eye Dis. 2016;8:11–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fu J, Sun F, Liu W, et al. Subconjunctival delivery of Dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol Pharm. 2016;13(9):2987–95.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gandhi A, Paul A, Sen SO, et al. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10:99–107.CrossRefGoogle Scholar
  23. 23.
    Gandra SC, Nguyen S, Nazzal S, et al. Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy. Pharm Dev Technol. 2015;20(1):41–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–4.PubMedGoogle Scholar
  25. 25.
    Gil ES, Frankowski DJ, Spontak RJ, et al. Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules. 2005;6:3079–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Gkikas M, Avery RK, Olsen BD. Thermoresponsive and mechanical properties of poly(l-proline) gels. Biomacromolecules. 2016;17(2):399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gukasyan HJ, Kim KJ, Lee VHL. The conjunctival barrier in ocular drug delivery. In: Ehrhardt C, Kim KJ, editors. Drug absorption studies. New York: Springer; 2007. p. 307–20.Google Scholar
  28. 28.
    Gutiérrez-Hernández JC, Caffey S, Abdallah W, et al. One-year feasibility study of replenish MicroPump for intravitreal drug delivery: a pilot study. Transl Vis Sci Technol. 2014;3(3):8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gutowska A, Bae YH, Feijen J, et al. Heparin release from thermosensitive hydrogels. J Control Release. 1992;22:95–104.CrossRefGoogle Scholar
  30. 30.
    Harrington WF, Von Hippel PH. The structure of collagen and gelatin. Adv Protein Chem. 1961;16:1–138.PubMedGoogle Scholar
  31. 31.
    Hayashi T, Onodera R, Tahara K, et al. Novel approaches for posterior segment ocular drug delivery with folate modified-liposomal formulation. Asian J Pharm. 2016;11:201–2.Google Scholar
  32. 32.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49:1993–2007.CrossRefGoogle Scholar
  33. 33.
    Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005;6(4):2131–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Huang X, Nayak BR, Lowe TL. Synthesis and characterization of novel thermoresponsive co-biodegradable hydrogels composed of N-isopropylacrylamide, poly(L-lactic acid), and dextran. J Polym Sci A Polym Chem. 2004;42:5054–66.CrossRefGoogle Scholar
  35. 35.
    Humayun M, Santos A, Altamirano JC, et al. Implantable micropump for drug delivery in patients with diabetic macular edema. Transl Vis Sci Technol. 2014;3(6):5.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ichigo H, Kishi R, Hirasa H. Separation of organic substances with thermoresponsive polymer hydrogel. Polym Gels Netw. 1994;2(3–4):315–22.CrossRefGoogle Scholar
  37. 37.
    Imai Y, Yoshida N, Naka K, et al. Thermoresponsive organic-inorganic polymer hybrids from Poly (N-isopropylacrylamide). Polym J. 1999;31(3):258–62.CrossRefGoogle Scholar
  38. 38.
    Indulekha S, Arunkumar P, Bahadur D, et al. Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mater Sci Eng C Mater Biol Appl. 2016;62:113–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Jaffe GJ, Martin D, Callanan D, et al. Fluocinolone acetonide implant (Retisert) for non-infectious posterior uveitis – thirty-four-week results of a multicenter randomized clinical study. Ophthalmology. 2006;113:1020–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Jain S, Sandhu PS, Malvi R, et al. Cellulose derivatives as Thermoresponsive polymer: an overview. J Appl Pharm Sci. 2013;3(12):139–44.Google Scholar
  41. 41.
    Jeong B, Bae YH, Lee DS, et al. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860–2.PubMedCrossRefGoogle Scholar
  42. 42.
    Kane FE, Burdan J, Cutino A, et al. Iluvien: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv. 2008;5(9):1039–46.PubMedCrossRefGoogle Scholar
  43. 43.
    Kang Derwent JJ, Mieler WF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc. 2008;106:206–13.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kang SJ, Durairaj C, Kompella UB, et al. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch Ophthalmol. 2009;127(8):1043–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Katono H, Sanui K, Ogata N, et al. Drug release OFF behavior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). Polym J. 1991;23(10):1179–89.CrossRefGoogle Scholar
  46. 46.
    Kim H, D'Amato RJ, Lutz RJ, et al. A subconjunctival implant for delivery of Cytochalasin E in a model of choroidal neovascularization: a pilot study. Invest Ophthalmol Vis Sci. 2003;44(13):4429.Google Scholar
  47. 47.
    Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44:1192–201.PubMedCrossRefGoogle Scholar
  48. 48.
    Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1(3):435–56.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kunugi S, Tada T, Tanaka N, et al. Microcalorimetric study of aqueous solution of a Thermoresponsive Polymer, poly(N-vinylisobutyramide) (PNVIBA). Polym J. 2002;34(5):383–8.CrossRefGoogle Scholar
  50. 50.
    Li L, Shan H, Yue CY, et al. Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir. 2002;18:7291–8.CrossRefGoogle Scholar
  51. 51.
    Li SK, D'Emanuele A. Effect of thermal cycling on the properties of thermoresponsive poly(N-isopropylacrylamide) hydrogels. Int J Pharm. 2003;267(1–2):27–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv. 2011;8(8):991–1007.PubMedCrossRefGoogle Scholar
  53. 53.
    Lihong W, Xin C, Yongxue G, et al. Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: preparation and in vitro-in vivo evaluation. Drug Dev Ind Pharm. 2014;40(10):1402–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Lim JI, Fung AE, Wieland M, et al. Sustained release intravitreal liquid drug delivery using triamcinolone Acetonide for cystoid macular edema in retinal vein occlusion. Ophthalmology. 2011;118(7):1416–22.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lin Z, Cao S, Chen X, et al. Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering. Biomacromolecules. 2013;14(7):2206–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu YY, Shao YH, Lü J. Preparation properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials. 2006;27:4016–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Lou J, Hu W, Tian R, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomedicine. 2014;9:2517–25.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Ma X, Dong L, Ji X, et al. Drug release behaviors of a pH/thermo-responsive porous hydrogel from poly(N-acryloylglycinate) and sodium alginate. J Sol-Gel Sci Technol. 2013;68:356–62.CrossRefGoogle Scholar
  59. 59.
    Mac Gabhann F, Demetriades AM, Deering T, et al. Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng. 2007;35:615–30.PubMedCrossRefGoogle Scholar
  60. 60.
    Matanovic MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm. 2014;472:262–75.PubMedCrossRefGoogle Scholar
  61. 61.
    McKenzie M, Betts D, Suh A, et al. Hydrogel-based drug delivery Systems for Poorly Water-Soluble Drugs. Molecules. 2015;20(11):20397–408.PubMedCrossRefGoogle Scholar
  62. 62.
    Misra G, Singh R, Aleman T, et al. Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials. 2009;30:6541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–315.PubMedCrossRefGoogle Scholar
  64. 64.
    Mukae K, Bae YH, Okano T, et al. A Thermo-sensitive hydrogel: poly(ethylene oxide-dimethyl siloxane-ethylene oxide)/poly(N-isopropyl acrylamide) interpenetrating polymer networks II. On-off regulation of solute release from Thermo-sensitive hydrogel. Polym J. 1990;22:250–65.CrossRefGoogle Scholar
  65. 65.
    Na K, Park JH, Kim SW, et al. Delivery of dexamethasone, ascorbate, and growth factor (TGF β-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials. 2006;27:5951–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakayama M, Okano T, Miyazaki T, et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release. 2006;115(1):46–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Ohya S, Matsuda T. Poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential. J Biomater Sci Polym. 2005;16:809–27.CrossRefGoogle Scholar
  68. 68.
    Patel N, Thakkar V, Metalia V, et al. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev Ind Pharm. 2016;42(9):1406–23.PubMedCrossRefGoogle Scholar
  69. 69.
    Pelletier AL, Rojas-Roldan L, Coffin J. Vision loss in older adults. Am Fam Physician. 2016;94(3):219–26.PubMedGoogle Scholar
  70. 70.
    Priya James H, John R, Alex A, et al. Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B. 2014;4(2):120–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rauck BM, Friberg TR, Medina Mendez CA, et al. Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci. 2014;55(1):469–76.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ruel-Garie’py E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm. 2000;203:89–98.CrossRefGoogle Scholar
  73. 73.
    Ruel-Gariepy E, Leroux JC. In situ forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.PubMedCrossRefGoogle Scholar
  74. 74.
    Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21(3):178–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Sanborn GE, Anand R, Torti RE, et al. Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis: use of an intravitreal device. Arch Ophthalmol. 1992;110:188–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Sánchez-Vaquero V, Satriano C, Tejera-Sánchez N, et al. Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds. Biointerphases. 2010;5:23–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Sanford M. Fluocinolone acetonide intravitreal implant (Iluvien®): in diabetic macular oedema. Drugs. 2013;73(2):187–93.PubMedCrossRefGoogle Scholar
  78. 78.
    Santarelli M, Diplotti L, Samassa F, et al. Advances in pharmacotherapy for wet age-related macular degeneration. Expert Opin Pharmacother. 2015;16(12):1769–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci. 1979;24:1073–87.CrossRefGoogle Scholar
  80. 80.
    Schmalijohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–70.CrossRefGoogle Scholar
  81. 81.
    Schultz C, Breaux J, Schentag J, et al. Drug delivery to the posterior segment of the eye through hydrogel contact lenses. Clin Exp Optom. 2011;94:212–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Shikamura Y, Yamazaki Y, Matsunaga T, et al. Hydrogel ring for topical drug delivery to the ocular posterior segment. Curr Eye Res. 2016;41:653–61.PubMedCrossRefGoogle Scholar
  83. 83.
    Shima C, Sakaguchi H, Gomi F, et al. Complications in patients after intravitreal injection of bevacizumab. Acta Ophthalmol. 2008;86(4):372–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Srilatha B. A review on age related eye diseases and their preventive measures. J Clinic Experiment Ophthalmol. 2011;2:12.Google Scholar
  85. 85.
    Srizawa T, Wakita K, Kaneko T, et al. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of Nanosized silica particles and subsequent acid treatment. J Polym Sci A Polym Chem. 2002;40:4228–35.CrossRefGoogle Scholar
  86. 86.
    Takahashi M, Shimazaki M, Yamamoto J. Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci B. 2001;39:91–100.CrossRefGoogle Scholar
  87. 87.
    Tekin H, Sanchez JG, Tsinman T, et al. Thermoresponsive platforms for tissue engineering and regenerative medicine. AICHE J. 2011;57(12):3249–58.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Turturro SB, Guthrie MJ, Appel AA, et al. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials. 2011;32(14):3620–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Van Tomme S, Mens A, Van Nostrum C, et al. Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres. Biomacromolecules. 2008;9:158–65.PubMedCrossRefGoogle Scholar
  90. 90.
    Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/Poloxamer in situ gel for ocular delivery of ciprofloxacin. The Open Drug Delivery Journal. 2008;2:61–70.CrossRefGoogle Scholar
  91. 91.
    Vihola H, Laukkanen A, Tenhu H, et al. Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. J Pharm Sci. 2008;97(11):4783–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang G, Nie Q, Zang C, et al. Self-assembled Thermoresponsive Nanogels prepared by reverse micelle → positive micelle method for ophthalmic delivery of Muscone, a poorly water-soluble drug. J Pharm Sci. 2016;105(9):2752–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang X, Shuang L, Liang L, et al. Evaluation of RPD peptide hydrogel in the posterior segment of the rabbit eye. J Biomater Sci Polymer. 2013;24:1185–97.CrossRefGoogle Scholar
  94. 94.
    Wanka G, Hoffman H, Ulbricht W. The aggregation behavior of poly- (oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym Sci. 1990;268:101–17.CrossRefGoogle Scholar
  95. 95.
    Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3:1215–42.CrossRefGoogle Scholar
  96. 96.
    Wu Y, Yao J, Zhou J, et al. Enhanced and sustained topical ocular delivery of cyclosporine A in thermosensitive hyaluronic acid-based in situ forming microgels. Int J Nanomedicine. 2013;8:3587–601.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Xie B, Jin L, Luo Z, et al. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Int J Pharm. 2015;490(1–2):375–83.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang H, Kao WJ. Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D,L-lactide) hydrogels: formulation, characterization and antibacterial drug delivery. Pharm Res. 2006;23:205–14.PubMedCrossRefGoogle Scholar
  99. 99.
    Yao R, Xu J, Lu X, et al. Phase transition behavior of HPMC-AA and preparation of HPMC-PAA Nanogels. J Nanomater. 2011;2011:507542.CrossRefGoogle Scholar
  100. 100.
    Yasukawa T, Ogura Y, Tabata Y, et al. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res. 2004;23:253–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Yin X, Hoffman AS, Stayton PS. Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules. 2006;7:1381–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhao Y, Fan X, Liu D, et al. PEGylated thermo-sensitive poly(amidoamine) dendritic drug delivery systems. Int J Pharm. 2011;409(1–2):229–36.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou Z, Chu B. Light-scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution. J Colloid Interface Sci. 1988;126:171–80.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Komal Parmar
    • 1
  • Jayvadan K. Patel
    • 2
  • Deepak Bhatia
    • 3
  • Yashwant V. Pathak
    • 4
  1. 1.ROFEL, Shri G.M. Bilakhia College of PharmacyVapiIndia
  2. 2.Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel UniversityVisnagarIndia
  3. 3.Shenandoah University – ICPH Fairfax, Bernard J. Dunn School of PharmacyFairfaxUSA
  4. 4.College of Pharmacy, University of South FloridaTampaUSA

Personalised recommendations