Advertisement

Intravitreal Injection Drug Delivery for Retina and Posterior Segment Disease: Challenges and the Future Ahead

  • Tejal Mehta
  • Munira Momin
Chapter

Abstract

Intravitreal drug delivery system has been found to successfully cross the blood-ocular barrier and providing an immediate healing effect. Although these advantages help in overcoming the challenges faced by conventional treatment methods, intravitreal injections have to be given by a skilled physician with precaution. Currently, the novel implants could replace injections, which prevent the side effects. The implants or injections can contain formulations involving liposomes, nanoparticles, and hydrogels to administer sustained drug release to the ocular tissues. Sterilization is ensured via the use of membrane filters for aqueous and oil-based solutions. Meanwhile, stability of active ingredients is preserved by controlling its storage environment. The hydrogel contact lens drug delivery system and suprachoroidal space (SCS) system have displayed great improvement in targeting precision when tested on animals. With recent studies involving in vivo and ex vivo models, the chapter briefly talks about the advances as well as drawbacks in terms of tackling ocular diseases.

References

  1. 1.
    Ambati J, et al. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21(2):145–51.CrossRefGoogle Scholar
  2. 2.
    Ma F, Nan K, Lee S, Beadle JR, Hou H, Freeman WR, Hostetler KY, Cheng L. Micelle formulation of hexadecyloxypropyl-cidofovir (HDP-CDV) as an intravitreal long-lasting delivery system. Eur J Pharm Biopharm. 2015 Jan;89:271–9.CrossRefGoogle Scholar
  3. 3.
    Yoav H, Frederic L, Benita S. Drug-loaded nanocarriers for back-of-the-eye diseases- formulation limitations. J Drug Deliv Sci Technol. 2015;30:331–41.CrossRefGoogle Scholar
  4. 4.
    Del Amo EM, Rimpelä A-K, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen K-S, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134.  https://doi.org/10.1016/j.preteyeres.2016.12.001.CrossRefPubMedGoogle Scholar
  5. 5.
    Meyer CH, Krohne TU, Charbel Issa P, Liu Z, Holz FG. Routes for drug delivery to the eye and retina: intravitreal injections. Dev Ophthalmol. 2016;55:63–70.  https://doi.org/10.1159/000431143. Epub 2015 Oct 26CrossRefPubMedGoogle Scholar
  6. 6.
    Kurz D, Ciulla TA, et al. Ophthalmol Clin N Am. 2002;15:405–10.CrossRefGoogle Scholar
  7. 7.
    Fernández-Ferreiro A, Luaces-Rodríguez A, Aguiar P, Pardo-Montero J, González-Barcia M, García-Varela L, Herranz M, Silva-Rodríguez J, Gil-Martínez M, Bermúdez MA, Vieites-Prado A. Preclinical PET study of intravitreal injections intravitreal preclinical PK study with PET/CT imaging. Invest Ophthalmol Vis Sci. 2017;58(7):2843–51.PubMedGoogle Scholar
  8. 8.
    Haghjou N, Abdekhodaie MJ, Cheng YL. Retina-choroid-sclera permeability for ophthalmic drugs in the vitreous to blood direction: quantitative assessment. Pharm Res. 2013;30(1):41–59.CrossRefGoogle Scholar
  9. 9.
    Andrés-Guerrero V, Bravo-Osuna I, Pastoriza P, Molina-Martinez IT, Rocí H-V. Novel technologies for the delivery of ocular therapeutics in glaucoma. J Drug Deliv Sci Technol. 2017;42:181.  https://doi.org/10.1016/j.jddst.2017.07.001.CrossRefGoogle Scholar
  10. 10.
    Contia B, et al. Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. Eur J Pharm Sci. 1997;5(5):287–93.CrossRefGoogle Scholar
  11. 11.
    Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012;161:628–34.CrossRefGoogle Scholar
  12. 12.
    Pachis K, Blazaka M, Klepetsanis P, Naoumidi etl M. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation. Eur J Pharm Sci. 2017;109:324–33.CrossRefGoogle Scholar
  13. 13.
    Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010;29:596–609.CrossRefGoogle Scholar
  14. 14.
    Zhou HY, et al. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 2013;6(3):390–6.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Janoria GK, et al. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4(4):371–88.CrossRefGoogle Scholar
  16. 16.
    Marta M, et al. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci. 2001;12(3):251–9.CrossRefGoogle Scholar
  17. 17.
    Joseph RR, Venkatraman SS. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond). 2017;12(6):683–702.Google Scholar
  18. 18.
    Zhang L, Shen W, Luan J, Yang D, Wei G, Yu L, Lu W, Ding J. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015 Sep;23:271–81.CrossRefGoogle Scholar
  19. 19.
    Linhua Z, et al. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine. 2009;4:175–83.Google Scholar
  20. 20.
    Puras G, Mashal M, Agirre M, Ojeda E, Grijalvo S, et al. A novel cationic niosome formulation for gene delivery to the retina. J Control Release. 2014 Jan 28;174:27–36.CrossRefGoogle Scholar
  21. 21.
    Baranowski P, et al. Ophthalmic drug dosage forms: characterisation and research methods. Sci World J. 2014., Article ID 861904;2014:1.CrossRefGoogle Scholar
  22. 22.
    Timothy WO, et al. Cannulation of the Suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–87.CrossRefGoogle Scholar
  23. 23.
    Awwad S, Lockwood A, Brocchini S, Peng T. Khaw PT. The PK-Eye: a novel in vitro ocular flow model for use in preclinical drug development. J Pharm Sci. 2015;104(10):3330–42.CrossRefGoogle Scholar
  24. 24.
    Tran J, Craven C, Wabner K, Schmit J, Matter B, Kompella U, Grossniklaus HE, Olsen TW. A Pharmacodynamic analysis of choroidal neovascularization in a porcine model using three targeted drugs. Invest Ophthalmol Vis Sci. 2017 Jul;58(9):3732–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tejal Mehta
    • 1
  • Munira Momin
    • 2
  1. 1.Department of PharmaceuticsInstitute of Pharmacy, Nirma UniversityAhmedabadIndia
  2. 2.SVKM’s Dr. Bhanuben Nanvati College of PharmacyMumbaiIndia

Personalised recommendations