Injectable Pro-drugs Approach for Retina and Posterior Segment Disease

  • Anita Patel
  • Jayvadan K. Patel
  • Yashwant V. Pathak


Drug delivery to the posterior segment of the eye is an area of intense research and massive prospective. Because of the anatomical and protecting structure of the eye, drug delivery to the interior parts of the eye still remains bothersome. Regardless of the emergence of effectual drugs to treat various retinal diseases, doctors still wrestle with how best to administer these sight-saving drugs. An ideal route of administration would deliver therapeutic levels of drug to targeted parts in a remarkably protected way at the same time as providing negligible interruption to the patient’s quality of life. Promising innovative ocular drug delivery such as an injectable pro-drug strategy has been, and is being, employed for this purpose. This novel pro-drug approach offers manifold benefits over the parent compound as they enhance the membrane permeability, site specificity, transporter targeting ability, and aqueous solubility. In this chapter, we have discussed a range of pro-drug strategies, for instance, functional group approach, polymer and lipid conjugation with the drug moiety to impart lipophilicity or hydrophilicity or else to target nutrient transporters by conjugation with transporter-specific moieties, which have been extensively functional for improving drug penetration into the ocular tissues, in addition to overall ocular bioavailability, with minimal disruption of the ocular diffusion barriers. We have also discussed an update on the use of injectable pro-drug concept in ocular drug delivery and highlighted continuing academic and industrial research and progress in terms of ocular pro-drug design as well as delivery.


Injectable pro-drugs Increased lipophilicity Enhanced permeability Transporter targeting Posterior segment disease 


  1. 1.
    Adibi SA. Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance. Am J Phys. 1997;272:E723–36.Google Scholar
  2. 2.
    Aldern KA, Ciesla SL, Winegarden KL, Hostetler KY. Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14) C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism. Mol Pharmacol. 2003;63:678–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Alexander J, Cargill R, Michelson SR, Schwam H. (Acyloxy)alkyl carbamates as novel bioreversible prodrugs for amines: increased permeation through biological membranes. J Med Chem. 1988;31:318–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules. 2007;12:373–88.CrossRefPubMedGoogle Scholar
  5. 5.
    Anand BS, Dey S, Mitra AK. Current prodrug strategies via membrane transporters/receptors. Expert Opin Biol Ther. 2002;2:607–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Anand BS, Hill JM, Dey S, Maruyama K, Bhattacharjee PS, Myles ME, Nashed YE, Mitra AK. In vivo antiviral efficacy of a dipeptide acyclovir prodrug, valval-acyclovir, against HSV-1 epithelial and stromal keratitis in the rabbit eye model. Invest Ophthalmol Vis Sci. 2003;44:2529–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Anand BS, Katragadda S, Nashed YE, Mitra AK. Amino acid prodrugs of acyclovir as possible antiviral agents against ocular hsv-1 infections: interactions with the neutral and cationic amino acid transporter on the corneal epithelium. Curr Eye Res. 2004;29:153–66.CrossRefPubMedGoogle Scholar
  8. 8.
    Anand BS, Mitra AK. Mechanism of corneal permeation of l-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19:1194–202.CrossRefPubMedGoogle Scholar
  9. 9.
    Atluri H, Anand BS, Patel J, Mitra AK. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res. 2004;78:815–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Aukunuru JV, Sunkara G, Bandi N, Thoreson WB, Kompella UB. Expression of multidrug resistance-associated protein (MRP) in human retinal pigment epithelial cells and its interaction with BAPSG, a novel aldose reductase inhibitor. Pharm Res. 2001;18:565–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Balimane PV, Sinko PJ. Involvement of multiple transporters in oral absorption of nucleosides analogues. Adv Drug Deliv Rev. 1999;39:183–09.CrossRefPubMedGoogle Scholar
  12. 12.
    Banker AS, Arevalo JF, Munguia D, Rahhal FM, Ishimoto B, Berry C, Clercq ED, Ochabski R, Taskintuna I, Freeman WR. Intraocular pressure and aqueous humor dynamics in patients with AIDS treated with intravitreal cidofovir (HPMPC) for cytomegalovirus retinitis. Am J Ophthalmol. 1997;124:168–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug Strategies in Ocular Drug Delivery. Med Chem. 2012;8:753–68.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Barot M, Gaudana R, Samantha S, Earla R, Mitra AK. Development and evaluation of Dexamethasone Prodrugs for the treatment of ocular ailments. Invest Ophthalmol Vis Sci. 2009;50:4998.CrossRefGoogle Scholar
  15. 15.
    Barza M. Factors affecting the intraocular penetration of antibiotics: the influence of route, inflammation, animal species and tissue pigmentation. Scand J Infect Dis. 1978;14:151–9.Google Scholar
  16. 16.
    Bidanset DJ, Beadle JR, Wan WB, Hostetler KY, Kern ER. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection. J Infect Dis. 2004;190:499–03.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J. 2005;7:E820–33.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bodor N, Farag HH, Somogyi G, Wu WM, Barros MD, Prokai L. Ocular-specific delivery of timolol by sequential bioactivation of its oxime and methoxime analogs. J Ocul Pharmacol Ther. 1997;13:389–03.CrossRefPubMedGoogle Scholar
  19. 19.
    Broer S, Wagner CA, Lang F. Function and structure of heterodimeric amino acid transporters. Am J Phys. 2001;281:C1077–93.CrossRefGoogle Scholar
  20. 20.
    Cheng L, Hostetler KY, Chaidhawangul S, Gardner MF, Beadle JR, Toyoguchi M, Bergeron-Lynn G, Freeman WR. Treatment or prevention of herpes simplex virus retinitis with intravitreally injectable crystalline 1-O-hexadecylpropanediol-3-phospho-ganciclovir. Invest Ophthalmol Vis Sci. 2002;43:515–21.PubMedGoogle Scholar
  21. 21.
    Cheng L, Hostetler KY, Lee J, Koh HJ, Beadle JR, Besho K, Toyoguchi M, Aldem K, Bovet JM, Freeman WR. Characterization of a novel intraocular drug-delivery system using crystalline lipid antiviral prodrug of ganciclovir and cyclic cidofovir. Invest Ophthalmol Vis Sci. 2004;45:4138–44.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Cheng L, Hostetler KY, Toyoguchi M, Beadle JR, Rodanant N, Gardner MF, Aldern KA, Bergeron-Lynn G, Freeman WR. Ganciclovir release rates in vitreous from different formulations of 1-O-hexadecylpropanediol- 3-phospho-ganciclovir. J Ocul Pharmacol Ther. 2003;19:161–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70:43–77.CrossRefPubMedGoogle Scholar
  24. 24.
    Constable PA, Lawrenson JG, Dolman DE, Arden GB, Abbott NJ. P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res. 2006;83:24–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Cundy KC, Lynch G, Shaw JP, Hitchcock MJ, Lee WA. Distribution and metabolism of intravitreal cidofovir and cyclic HPMPC in rabbits. Curr Eye Res. 1996;15:569–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Dal Pozzo F, Andrei G, Lebeau I, Beadle JR, Hostetler KY, De Clercq E, Snoeck R. In vitro evaluation of the anti-orf virus activity of alkoxyalkyl esters of CDV, cCDV and (S)-HPMPA. Antivir Res. 2007;75:52–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Deves R, Boyd CA. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev. 1998;78:487–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Dey S, Anand BS, Patel J, Mitra AK. Transporters/receptors in the anterior chamber: pathways to explore ocular drug delivery strategies. Expert Opin Biol Ther. 2003;3:23–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Dias C, Nashed Y, Atluri H, Mitra A. Ocular penetration of acyclovir and its peptide prodrugs valacyclovir and val-valacyclovir following systemic administration in rabbits: An evaluation using ocular microdialysis and LC-MS. Curr Eye Res. 2002;25:243–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Ding S. Recent development in ophthalmic drug delivery. Pharm Sci Tech Today. 1998;1:328–35.CrossRefGoogle Scholar
  31. 31.
    Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB. Functional and molecular analysis of D-serine transport in retinal Muller cells. Exp Eye Res. 2007;84:191–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Duvvuri S, Gandhi MD, Mitra AK. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res. 2003;27:345–53.CrossRefPubMedGoogle Scholar
  33. 33.
    Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metab. 2004;5:507–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Farag HH, Wu WM, Barros MD, Somogyi G, Prokai L, Bodor N. Ocular-specific chemical delivery systems of betaxolol for safe local treatment of glaucoma. Drug Des Discov. 1997;15:117–30.PubMedGoogle Scholar
  35. 35.
    Faulkner R, Sharif NA, Orr S, Sall K, Dubiner H, Whitson JT, Moster M, Craven ER, Curtis M, Pailliotet C, Martens K, Dahlin D. Aqueous humor concentrations of bimatoprost free acid, bimatoprost and travoprost free acid in cataract surgical patients administered multiple topical ocular doses of LUMIGAN or TRAVATAN. J Ocul Pharmacal Ther. 2010;26:147–56.CrossRefGoogle Scholar
  36. 36.
    Fukano Y, Kawazu K. Disposition and metabolism of a novel prostanoid antiglaucoma medication, tafluprost, following ocular administration to rats. Drug Metab Dispos. 2009;37:1622–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Gandhi MD, Pal D, Mitra AK. Identification and functional characterization of a Na(+)- independent large neutral amino acid transporter (LAT2) on ARPE-19 cells. Int J Pharm. 2004;275:189–200.CrossRefPubMedGoogle Scholar
  38. 38.
    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197–216.CrossRefPubMedGoogle Scholar
  39. 39.
    Gerhart DZ, Leino RL, Drewes LR. Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience. 1999;92:367–75.CrossRefPubMedGoogle Scholar
  40. 40.
    Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:961–4.PubMedGoogle Scholar
  41. 41.
    Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Del Rev. 2001;52:37–48.CrossRefGoogle Scholar
  42. 42.
    Gogate US, Repta AJ, Alexander J. N-(Acyloxyalkoxycarbonyl) derivatives as potential prodrugs of amines. I. Kinetics and mechanism of degradation in aqueous solutions. Int J Pharm. 1987;40:235–48.CrossRefGoogle Scholar
  43. 43.
    Gunda S, Hariharan S, Mitra AK. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol Ther. 2006;22:465–76.CrossRefPubMedGoogle Scholar
  44. 44.
    Hariharan S; Thakkar NR, Mitra AK. Transporter-targeted Drug Delivery to the Retina. Retina Today. 2009;4:57–62.Google Scholar
  45. 45.
    Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Del Rev. 2001;52:5–16.CrossRefGoogle Scholar
  46. 46.
    Jain-Vakkalagadda B, Dey S, Pal D, Mitra AK. Identification and functional characterization of a Na+−independent large neutral amino acid transporter, LAT1, in human and rabbit cornea. Invest Ophthalmol Vis Sci. 2003;44:2919–27.CrossRefPubMedGoogle Scholar
  47. 47.
    Jain-Vakkalagadda B, Pal D, Gunda S, Nashed Y, Ganapathy V, Mitra AK. Identification of a Na+−dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol Pharm. 2004;1:338–46.CrossRefPubMedGoogle Scholar
  48. 48.
    Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.CrossRefPubMedGoogle Scholar
  49. 49.
    Janoria KG, Mitra AK. Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-monobutyrate) from PLGA microspheres. Int J Pharm. 2007;338:133–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Järvinen T, Niemi R. Prodrug Approaches to Ophthalmic Drug Delivery. In: Stella V, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J, editors. , vol. V. New York: Springer; 2007. p. 125–55.Google Scholar
  51. 51.
    Juntunen J, Huuskonen J, Laine K, Niemi R, Taipale H, Nevalainen T, Pate DW, Jarvinen T. Anandamide prodrugs. 1. Water-soluble phosphate esters of arachidonylethanolamide and R-methanandamide. Eur J Pharm Sci. 2003;19:37–43.CrossRefPubMedGoogle Scholar
  52. 52.
    Juntunen J, Jarvinen T, Niemi R. In-vitro corneal permeation of cannabinoids and their water-soluble phosphate ester prodrugs. J Pharm Pharmacol. 2005;57:1153–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Kansara V, Hao Y, Mitra AK. Dipeptide monoester ganciclovir prodrugs for transscleral drug delivery: targeting the oligopeptide transporter on rabbit retina. J Ocul Pharmacol Ther. 2007;23:321–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Kansara V, Luo S, Balasubrahmanyam B, Pal D, Mitra AK. Biotin uptake and cellular translocation in human derived retinoblastoma cell line (Y-79): a role of hSMVT system. Int J Pharm. 2006;312:43–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res. 2009b;34:1–9.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Karla PK, Pal D, Quinn T, Mitra AK. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm. 2007;336:12–21.CrossRefPubMedGoogle Scholar
  57. 57.
    Karla PK, Quinn TL, Herndon BL, Thomas P, Pal D, Mitra A. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux. J Ocul Pharmacol Ther. 2009a;25:121–32.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Katragadda S, Gunda S, Hariharan S, Mitra AK. Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber: evaluation of their utility in treating ocular HSV infections. Int J Pharm. 2008;359:15–24.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Katragadda S, Talluri RS, Pal D, Mitra AK. Identification and characterization of a Na+− dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea. Curr Eye Res. 2005;30:989–1002.CrossRefPubMedGoogle Scholar
  60. 60.
    Kawakami S, Yamamura K, Mukai T, Nishida K, Nakamura J, Sakaeda T, Nakashima M, Sasaki H. Sustained ocular delivery of tilisolol to rabbits after topical administration or intravitreal injection of lipophilic prodrug incorporated in liposomes. J Pharm Pharmacol. 2001;53:1157–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Kekuda R, Torres-Zamorano V, Fei YJ, Prasad PD, Li HW, Mader LD, Leibach FH, Ganapathy V. Molecular and functional characterization of intestinal Na+-dependent neutral amino acid transporter b0. Am J Phys. 1997;272:G1463–72.Google Scholar
  62. 62.
    Kennedy BG, Mangini NJ. P-glycoprotein expression in human retinal pigment epithelium. Mol Vis. 2002;8:422–30.PubMedGoogle Scholar
  63. 63.
    Kim JS, Beadle JR, Freeman WR, Hostetler KY, Hartmann K, Valiaeva N, Kozak I, Conner L, Trahan J, Aldern KA, Cheng L. A novel cytarabine crystalline lipid prodrug: Hexadecyloxypropyl cytarabine 3′,5′-cyclic monophosphate for proliferative vitreoretinopathy. Mol Vis. 2012;18:1907–17.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kwatra D, Vaishya R, Gaudana R, Jwala J. In: Rautio J, editor. Prodrugs and targeted delivery towards beller ADME properties, vol. 47. Germany: Wiley-VCH; 2011. p. 181–01.CrossRefGoogle Scholar
  65. 65.
    Lee VH. Membrane transporters. Eur J Pharm Sci. 2000;11:S41–50.CrossRefPubMedGoogle Scholar
  66. 66.
    Li YH, Tanno M, Itoh T, Yamada H. Role of monocarboxylic acid transport system in the intestinal absorption of an orally active beta lactam prodrug: carindacillin as a model. Int J Pharm. 1999;191:151–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Li Z, Bitha P, Lang SA, Lin YI. Synthesis of (alkoxycarbonyloxy)methyl, (acyloxy)methyl and (oxodioxolenyl)methyl carhamates a bioreversible prodrug moieties for amines. Bioorg Med Chem Lett. 1997;7:2909–12.CrossRefGoogle Scholar
  68. 68.
    Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci. 2006;95:1177–95.CrossRefPubMedGoogle Scholar
  69. 69.
    Lim JI, Anderson CT, Hutchinson A, Buggage RR, Grossniklaus HE. The role of gravity in gentamicin-induced toxic effects in a rabbit model. Arch Ophthalmol. 1994;112:1363–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Lu Y, Low PS. Folate mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54:675–93.CrossRefPubMedGoogle Scholar
  71. 71.
    Majumdar S, Hingorani T, Srirangam R, Gadepalli RS, Rimoldi JM, Repka MA. Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res. 2009;26:1261–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Majumdar S, Kansara V, Mitra AK. Vitreal pharmacokinetics of dipeptide monoester prodrugs of ganciclovir. J Ocul Pharmacol Ther. 2006;22:231–41.CrossRefPubMedGoogle Scholar
  73. 73.
    Majumdar S, Nashed YE, Patel K, Jain R, Itahashi M, Neumann DM, Hill JM, Mitra AK. Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: in vitro and in vivo evaluations. J Ocul Pharmacol Ther. 2005;21:463–74.CrossRefPubMedGoogle Scholar
  74. 74.
    Malik P, Kadam RS, Cheruvu NP, Kompella UB. Hydrophilic prodrug approach for reduced pigment binding and enhanced transscleral retinal delivery of celecoxib. Mol Pharm. 2012;9:605–14.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology. 1978;85:268–75.CrossRefPubMedGoogle Scholar
  76. 76.
    Manna F, Chimenti F, Bolasco A, Lena R, Filippelli A, Falciani M, Fontana M. Beta-adrenoreceptor blocking heterocyclic oximes and ethers. Farmaco. 1996;51:699–06.PubMedGoogle Scholar
  77. 77.
    Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136–63.CrossRefPubMedGoogle Scholar
  78. 78.
    McComb RB, Bowers GN, Jr Posen S. Alkaline Phosphatase. New York/London: Plenum Press; 1979.CrossRefGoogle Scholar
  79. 79.
    Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. Advances in Organ Biology. 2006;10:307–51.CrossRefGoogle Scholar
  80. 80.
    Nambu H, Nambu R, Melia M, Campochiaro PA. Combretastatin A-4 phosphate suppresses development and induces regression of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3650–5.CrossRefPubMedGoogle Scholar
  81. 81.
    Neises B, Angew WS. Simple method for the esterification of carboxylic acids bernhard neises and wolfgang steglich. Chem Int Ed. 1978;17:522.CrossRefGoogle Scholar
  82. 82.
    Nielsen CU, Andersen A, Brodin B, Frokjaer S, Taub ME, Steffansen B. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hpept1 in human intestinal caco-2 cell line. J Control Release. 2001;76:129–38.CrossRefPubMedGoogle Scholar
  83. 83.
    Nielsen CU V°b J, Andersen R, Brodin B, Steffansen B. Recent advances in therapeutic applications of human peptide transporters. Expert Opin Ther Patents. 2005;15:153–66.CrossRefGoogle Scholar
  84. 84.
    Ocheltree SM, Keep RF, Shen H, Yang D, Hughes BA, Smith DE. Preliminary investigation into the expression of proton-coupled oligopeptide transporters in neural retina and retinal pigment epithelium (RPE): lack of functional activity in RPE plasma membranes. Pharm Res. 2003;20:1364–72.CrossRefPubMedGoogle Scholar
  85. 85.
    Ogura Y. Drug delivery to the posterior segments of the eye. Adv Drug Del Rev. 2001;52:1–3.CrossRefGoogle Scholar
  86. 86.
    Palacin M, Estevez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78:969–1054.CrossRefPubMedGoogle Scholar
  87. 87.
    Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F. Amino acid transport of y+l-type by heterodimers of 4f2hc/cd98 and members of the glycoprotein-associated amino acid transporter family. EMBO J. 1999;18:49–57.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Rathore MS, Gupta VB. Drug delivery enhancement strategies through cornea: a review. Asian J Pharm. 2007;1:40–6.Google Scholar
  89. 89.
    Rautio J, Kumpulainen H, Heimbach T, R O, Oh D, Järvinen T, Savolainen J. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7:255–70.CrossRefPubMedGoogle Scholar
  90. 90.
    Reddy IK. Ocular therapeutics and drug delivery: a multidisciplinary approach. 1st ed: Technomic Publishing Co., Inc.. Lancaster, Pennsylvania, USA; 1995.Google Scholar
  91. 91.
    Shimazaki A, Kirihara T, Rao PV, Tajima H, Matsugi T, Epstein DL. Effects of the new ethacrynic acid oxime derivative SA12590 on intraocular pressure in cats and monkeys. Biol Pharm Bull. 2007;30:1445–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Simplicio AL, Clancy JM, Gilmer JF. Prodrugs for amines. Molecules. 2008;13:519–47.CrossRefPubMedGoogle Scholar
  93. 93.
    Talluri RS, Gaudana R, Hariharan S, Mitra AK. Pharmacokinetics of stereoisomeric dipeptide prodrugs of acyclovir following intravenous and oral administrations in rats: A study involving corneal uptake following oral dosing. Ophthalmol Eye Dis. 2009;1:21–31.PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Talluri RS, Hariharan S, Karla PK, Mitra AK, Patricia D, Reza D. Drug delivery to cornea and conjunctiva-esterase and protease directed prodrug design. In: Dartt DA, Bex P, Mcloon L, Niederkorn J, editors. Ocular Periphery and Disorders. San Deigo, California: Elsevier, Academic Press; 2011. p. 42–53.Google Scholar
  95. 95.
    Talluri RS, Samanta SK, Gaudana R, Mitra AK. Synthesis, metabolism and cellular permeability of enzymatically stable dipeptide prodrugs of acyclovir. Int J Pharm. 2008;361:118–24.PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 2000;89:1371–88.CrossRefPubMedGoogle Scholar
  97. 97.
    Taskar P, Tatke A, Majumdar S. Advances in the use of prodrugs for drug delivery to the eye. Expert Opin Drug Deliv. 2017;14:49–63.CrossRefPubMedGoogle Scholar
  98. 98.
    Taskintuna I, Banker AS, Floresaguilar M, Bergeronlynn G, Aldern KA, Hostetler KY, Freeman WR. Evaluation of a novel lipid prodrug for intraocular drug delivery: effect of acyclovir diphosphate dimyristoylglycerol in a rabbit model with herpes simplex virus-1 retinitis. Retina. 1997;17:57–64.CrossRefPubMedGoogle Scholar
  99. 99.
    Testa B, Mayer JM. Hydrolysis in Drug and Prodrug Metabolism. Weinheim: Wiley-VCH Verlag GmbH; 2003.CrossRefGoogle Scholar
  100. 100.
    Torrents D, Estevez R, Pineda M, Fernández E, Lloberas J, Shi YB, Zorzano A, Palacín M. Identification and characterization of a membrane protein (y+l amino acid transporter-1) that associates with 4f2hc to encode the amino acid transport activity y+l: a candidate gene for lysinuric protein intolerance. J Biol Chem. 1998;273:32437–45.CrossRefPubMedGoogle Scholar
  101. 101.
    Vadlapudi AD, Vadlapatla RK, Earla R, Sirimulla S, Bailey JB, Pal D, Mitra AK. Novel biotinylated lipid prodrugs of acyclovir for the treatment of herpetic keratitis (HK): transporter recognition, tissue stability and antiviral activity. Pharm Res. 2013;30:2063–76.PubMedCentralCrossRefPubMedGoogle Scholar
  102. 102.
    Vadlapudi AD, Vadlapatla RK, Kwatra D, Earla R, Samanta SK, Pal D, Mitra AK. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm. 2012;434:315–24.PubMedCentralCrossRefPubMedGoogle Scholar
  103. 103.
    Wang L, Damji KF, Chialant D, Hodge WG. Hypotony after intravenous cidofovir therapy for the treatment of cytomegalovirus retinitis. Can J Ophthalmol. 2002;37:419–22.CrossRefPubMedGoogle Scholar
  104. 104.
    Wheeler G. Gabapentin. Pfizer. Curr Opin Investig Drugs. 2002;3:470–7.PubMedGoogle Scholar
  105. 105.
    Yasukawa T, Kimura H, Tabata Y, Ogura Y. Biodegradable scleral plugs for vitreoretinal drug delivery. Adv Drug Del Rev. 2001;52:25–36.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anita Patel
    • 1
  • Jayvadan K. Patel
    • 1
  • Yashwant V. Pathak
    • 2
  1. 1.Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel UniversityVisnagarIndia
  2. 2.College of Pharmacy, University of South FloridaTampaUSA

Personalised recommendations