Lipid Prodrug Approach for Retina and Posterior Segment Disease

  • Dasharath M. Patel
  • Jayvadan K. Patel


An inch or less. That is the short distance an ocular drug must travel to reach a target site at the back of the eye. Research has traveled a long way over the past four decades in efforts to make this inch-long journey more successful. Delivering ocular drugs to their target tissues often requires them to traverse the fat–water–fat structure of the corneal barrier while ensuring minimum wastage through tear washout and systemic absorption. This is why delivering drugs effectively to the posterior of the eye is a challenge that many companies have worked to overcome. Treatment of diseases of the retina and posterior segment of the eye, such as age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, posterior uveitis, and retinitis pigmentosa, requires novel drug delivery systems for efficacious delivery of therapeutic drugs. This challenge has prompted the development of biodegradable and nonbiodegradable sustained release systems for injection or transplantation into the vitreous as well as drug-loaded nanoparticles, microspheres, and liposomes. These drug delivery systems utilize topical, systemic, subconjunctival, intravitreal, transscleral, and iontophoretic routes of administration. The focus of research has been the development of methods that will increase the efficacy of spatiotemporal drug application, resulting in more successful therapy for patients with posterior segment diseases. This chapter summarizes recent advances in the research and development of drug delivery methods of the posterior chamber of the eye, with special emphasis on the use of lipid prodrug approach.


Lipid prodrug approach Retina Posterior segment disease 


  1. 1.
    Lee SS, Robinson MR. Novel drug delivery systems for retinal diseases. A review. Ophthalmic Res. 2009;41:124–35. PubMed: 19321933CrossRefGoogle Scholar
  2. 2.
    Barocas VH, Balachandran RK. Sustained transscleral drug delivery. Expert Opin Drug Deliv. 2008;5:1–10. PubMed: 18095925CrossRefGoogle Scholar
  3. 3.
    Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–43. PubMed: 18275911CrossRefGoogle Scholar
  4. 4.
    Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18:235–9. PubMed: 17435432CrossRefGoogle Scholar
  5. 5.
    Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81. PubMed: 18491982CrossRefGoogle Scholar
  6. 6.
    Liu M, Regillo CD. A review of treatments for macular degeneration: a synopsis of currently approved treatments and ongoing clinical trials. Curr Opin Ophthalmol. 2004;15:221–6. PubMed: 15118509CrossRefGoogle Scholar
  7. 7.
    Gershkovich P, Wasan KM, Barta CA. A review of the application of lipid-based systems in systemic, dermal/transdermal, and ocular drug delivery. Crit Rev Ther Drug Carrier Syst. 2008;25:545–84. PubMed: 19166393CrossRefGoogle Scholar
  8. 8.
    Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88. PubMed: 17683251CrossRefGoogle Scholar
  9. 9.
    Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79. PubMed: 16310884CrossRefGoogle Scholar
  10. 10.
    Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57:2010–32. PubMed: 16289435CrossRefGoogle Scholar
  11. 11.
    Jaffe GJ, McCallum RM, Branchaud B, Skalak C, Butuner Z, Ashton P. Long-term follow-up results of a pilot trial of a fluocinolone acetonide implant to treat posterior uveitis. Ophthalmology. 2005;112:1192–8. PubMed: 15921758CrossRefGoogle Scholar
  12. 12.
    Callanan DG, Jaffe GJ, Martin DF, et al. Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results. Arch Ophthalmol. 2008;126:1191–201. PubMed: 18779477CrossRefGoogle Scholar
  13. 13.
    Kane FE, Burdan J, Cutino A, Green KE. Iluvien: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv. 2008;5:1039–46. PubMed: 18754752CrossRefGoogle Scholar
  14. 14.
    Williams GA, Haller JA, Kuppermann BD, et al. Dexamethasone posterior-segment drug delivery system in the treatment of macular edema resulting from uveitis or Irving–Gass syndrome. Am J Ophthalmol. 2009;147:1048–54. e2. [PubMed: 19268890]CrossRefGoogle Scholar
  15. 15.
    Edelhauser HF, Boatright JH, Nickerson JM. Drug delivery to posterior intraocular tissues: third annual ARVO/Pfizer Ophthalmics research institute conference. Invest Ophthalmol Vis Sci. 2008;49:4712–20. PubMed: 18708617CrossRefGoogle Scholar
  16. 16.
    Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–315.CrossRefGoogle Scholar
  17. 17.
    Yasukawa T, Tabata Y, Kimura H, Ogura Y. Recent advances in intraocular drug delivery systems. Recent Pat Drug Deliv Formul. 2011;5(1):1–10.CrossRefGoogle Scholar
  18. 18.
    Shahwal V. Ocular drug delivery: an overview. Int J Biomed Adv Res. 2011;2(5):167187.Google Scholar
  19. 19.
    Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.CrossRefGoogle Scholar
  20. 20.
    EyeGate announces interim data from phase 1b/2a clinical trial of iontophoretic EGP-437 ophthalmic solution in macular edema patients [press release]. EyeGate Pharma. November 5, 2015. Accessed 28 Dec 2015.
  21. 21.
    Taiwan Liposome Company. Pipeline: ProDex. Accessed 28 Dec 2015.
  22. 22.
    Ocular Therapeutix. Product Candidates: Sustained Release Travoprost. Accessed 28 Dec 2015.
  23. 23.
    Envisia Therapeutics’ lead product candidate, env515 (Travoprost XR), achieves primary efficacy endpoint in phase 2a glaucoma clinical trial [press release]. Envisia Therapeutics. October 6, 2015. Accessed 28 Dec 2015.
  24. 24.
    Ocular Therapeutix. Product candidates: posterior segment injections. Accessed December 29, 2015.
  25. 25.
    EyeGate Pharma. Technology: Eyegate II Delivery System. Accessed 29 Dec 2015.
  26. 26.
  27. 27.
    Oculis. Pipeline. Accessed 29 Dec 2015.
  28. 28.
    Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, et al. g-cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther. 2014;30(1):35–41.CrossRefGoogle Scholar
  29. 29.
    Replenish Inc. Our technology: ophthalmic micropump system. Accessed 29 Dec 2015.
  30. 30.
    pSivida Corp. Products: Durasert. Accessed 29 Dec 2015.
  31. 31.
    2015 ARVO finds connections in innovative drug delivery, therapies. Ophthalmology Times. 15 July 2015.Google Scholar
  32. 32.
    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216. PubMed: 18758924CrossRefGoogle Scholar
  33. 33.
    Cheng L, Hostetler KY, Lee J, Koh HJ, Beadle JR, Besho K, Toyoguchi M, Aldem K, Bovet JM, Freeman WR. Characterization of a novel intraocular drug-delivery system using crystalline lipid antiviral prodrug of ganciclovir and cyclic cidofovir. Invest Ophthalmol Vis Sci. 2004;45(11):4138–44. PubMed: 15505067CrossRefGoogle Scholar
  34. 34.
    Bidanset DJ, Beadle JR, Wan WB, Hostetler KY, Kern ER. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection. J Infect Dis. 2004;190(3):499–503. PubMed: 15243923CrossRefGoogle Scholar
  35. 35.
    Jespersen H, Andersen J, Ditzel H. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Biochimie. 2012;94(1):2–10.CrossRefGoogle Scholar
  36. 36.
    Reddy LH, Couvreur P. Lipid-based anticancer prodrugs. In: Macromolecular Anticancer Therapeutics. New York: Springer; 2009. p. 291–328.Google Scholar
  37. 37.
    Chien DS, Schoenwald RD. Improving the ocular absorption of phenylephrine. Biopharm Drug Dispos. 1986;7(5):453–62. PubMed: 3779036CrossRefGoogle Scholar
  38. 38.
    Gokulgandhi MR, Barot M, Bagui M, et al. Transporter-targeted lipid prodrugs of cyclic cidofovir: a potential approach for the treatment of cytomegalovirus retinitis. J Pharm Sci. 2012;101(9):3249–63.CrossRefGoogle Scholar
  39. 39.
    Ciesla SL, Trahan J, Wan WB, et al. Esterification of cidofovir with alkoxyalkanols increases oral bioavailability and diminishes drug accumulation in kidney. Antivir Res. 2003;59(3):163–71.CrossRefGoogle Scholar
  40. 40.
    Kern DCQ, Deborah JC, Wan WB, et al. Oral treatment of cowpox and vaccinia virus infections in mice with ether lipid esters of cidofovir. Antimicrob Agents Chemother. 2004;48(2):404–12.CrossRefGoogle Scholar
  41. 41.
    Cheng L, Beadle JR, Tammewar A, et al. Intraocular pharmacokinetics of a crystalline lipid prodrug, octadecyloxyethyl-cyclic-cidofovir, for cytomegalovirus retinitis. J Ocul Pharmacol Ther. 2011;27(2):157–62.CrossRefGoogle Scholar
  42. 42.
    Appelt WR, Freeman LC, Maria ER, et al. Evaluation of intraocular pharmacokinetics and toxicity of prinomastat (AG3340) in the rabbit. J Ocul Pharmacol Ther. 2004;17(3):295–304.Google Scholar
  43. 43.
    Ma F, Nan K, Lee S, et al. Micelle formulation of hexadecyloxypropyl-cidofovir (HDP-CDV) as an intravitreal long-lasting delivery system. Eur J Pharm Sci. 2015;89:271–9.Google Scholar
  44. 44.
    Cholkar K, Trinh HM, Vadlapudi AD, et al. Synthesis and characterization of ganciclovir long chain lipid prodrugs. Adv Ophthalmol Vis Syst. 2014;1(2):00007.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Janoria KG, Boddu SHS, Wang Z, et al. Vitreal pharmacokinetics of biotinylated ganciclovir: role of sodium-dependent multivitamin transporter expressed on retina. J Ocul Pharmacol Ther. 2009;25(1):39–49.CrossRefGoogle Scholar
  46. 46.
    Vadlapudi AD, Vadlapatla RK, Earla R, et al. Novel biotinylated lipid prodrugs of acyclovir for the treatment of herpetic keratitis (HK): transporter recognition, tissue stability and antiviral activity. Pharm Res. 2013;30(8):2063–76.CrossRefGoogle Scholar
  47. 47.
    Vadlapudi AD, Vadlapatla RK, Kwatra D, et al. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm Sci. 2012;434(1–2):315–24.CrossRefGoogle Scholar
  48. 48.
    Peyman GA, Schulman J. Proliferative vitreoretinopathy and chemotherapeutic agents. Surv Ophthalmol. 1985;29(6):434–42.CrossRefGoogle Scholar
  49. 49.
    Assil KK, Hartzer M, Weinreb RN, et al. Liposome suppression of proliferative vitreoretinopathy. Rabbit model using antimetabolite encapsulated liposomes. Invest Ophthalmol Vis Sci. 1991;32(11):2891–7.PubMedGoogle Scholar
  50. 50.
    Kim JS, Beadle JR, Freeman WR, et al. A novel cytarabine crystalline lipid prodrug: hexadecyloxypropyl cytarabine 3′,5 ′-cyclic monophosphate for proliferative vitreoretinopathy. Mol Vis. 2012;18:1907.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Cbarteris DG, Aylward GW, Wong D, Groenewald C, Asaria RH, Bunce C. A randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in management of established proliferative vitreoretinopathy. Ophthalmology. 2004;111(12):2240–5. PubMed: 15582080CrossRefGoogle Scholar
  52. 52.
    Cardillo JA, Farah ME, Mitre J, Morales PH, Costa RA, Melo LA, Kuppermann B, Jorge R, Ashton P. An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy. Br J Ophthalmol. 2004;88(9):1201–5. PubMed: 15317716CrossRefGoogle Scholar
  53. 53.
    Cheng L, Hostetler K, Valiaeva N, Tammewar A, Freeman WR, Beadle J, Bartsch DU, Aldern K, Falkenstein I. Intravitreal crystalline drug delivery for intraocular proliferation disease. Invest Ophthalmol Vis Sci. 2010;51(1):474–81. PubMed: 19696179CrossRefGoogle Scholar
  54. 54.
    Vadlapudi AD, Cholkar K, Vadlapatla RK, Mitra AK. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: formulation development and ocular biocompatibility. J Ocul Pharmacol Ther. 2014 ª Mary Ann Liebert, Inc.;30(1):49–58. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dasharath M. Patel
    • 1
  • Jayvadan K. Patel
    • 2
  1. 1.Arihant School of Pharmacy & Bio-Research InstituteGandhinagarIndia
  2. 2.Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel UniversityVisnagarIndia

Personalised recommendations