Transscleral Drug Delivery to Retina and Posterior Segment Disease

  • Ann-Marie Ako-Adounvo
  • Pradeep K. KarlaEmail author


The complexities of the anatomical and physiological barriers pose a challenge for the treatment of posterior segment eye disease. Ineffective delivery of the drug to the posterior site is regarded a major contributing factor for treatment failure. Transscleral drug delivery aims the large surface area of the sclera for increased drug absorption when compared to the intravitreal injections. This chapter addresses posterior segment diseases, treatment approaches and routes of drug administration, with emphasis on transscleral drug delivery. Application of novel strategies such as iontophoresis have been useful for improved permeability and drug delivery of ionized drugs. Further, newer techniques such as, polymeric colloids, implants, and thermoresponsive gels are currently investigated for efficiency.



This is supported by Howard University RCMI grant and the research grant from EcoBiotix LLC.


  1. 1.
    Shah JN, Shah HJ, Groshev A, Hirani AA, Pathak YV, Sutariya VB. Nanoparticulate transscleral ocular drug delivery. J Biomol Res Ther. 2014;3(3):1–14.Google Scholar
  2. 2.
    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216.CrossRefGoogle Scholar
  3. 3.
    Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51:213–31.CrossRefGoogle Scholar
  4. 4.
    Addo E, Bamiro OA, Siwale R. Anatomy of the eye and common diseases affecting the eye. In: Addo RT, editor. Ocular drug delivery: advances, challenges and applications. Cham: Springer; 2016. p. 11–25.CrossRefGoogle Scholar
  5. 5.
    Cunha-Vaz JG, Marques FB, Fernandes R, Alves C, Velpandian T. Drug transport across blood-ocular barriers and pharmacokinetics. In: Velpandian T, editor. Pharmacology of ocular therapeutics. Cham: Springer; 2016. p. 37–63.CrossRefGoogle Scholar
  6. 6.
    Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y. Anatomy and physiology of the eye: effect of mucopolysaccharidoses disease on structure and function – a review. Clin Exp Ophthalmol. 2010;38:2–11.CrossRefGoogle Scholar
  7. 7.
    Cunha-Vaz JG. The blood-retinal barriers. Doc Ophthalmol. 1976;41(2):287–327.CrossRefGoogle Scholar
  8. 8.
    Bourne R, Flaxman S, Braithwaite T, Cicinelli M, Das A, Jonas J, Keeffe J, Kempen J, Leasher J, Limburg H, Naidoo K, Pesudovs K, Resnikoff S, Silvester A, Stevens G, Tahhan N, Wong T, Taylor H, Vision Loss Expert Group. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(9):e888–97.CrossRefGoogle Scholar
  9. 9.
    World Health Organization. Media center. Facts sheet: visual impairment and blindness. Website: Updated Oct 2017; Accessed 25 Oct 2017.
  10. 10.
    del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems – a shift to the posterior segment. Drug Discov Today. 2008;13(3/4):135–43.PubMedGoogle Scholar
  11. 11.
    Edelhauser H, Rowe-Rendleman C, Robinson M, Dawson D, Chader G, Grossniklaus H, Rittenhouse K, Wilson C, Weber D, Kupperman B, Csaky K, Olson T, Kompella U, Holers M, Hageman G, Gilger B, Campochiaro P, Whitcup S, Wong W. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Investig Ophthalmol Vis Sci. 2010;51(11):5403–20.CrossRefGoogle Scholar
  12. 12.
    Geroski D, Edelhauser H. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41(5):961–4.Google Scholar
  13. 13.
    Kaur I, Kakkar S. Nanotherapy for posterior eye disease. J Control Release. 2014;193:100–12.CrossRefGoogle Scholar
  14. 14.
    Janoria K, Gunda S, Boddu S, Mitra A. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.CrossRefGoogle Scholar
  15. 15.
    Gehrs K, Anderson D, Johnson L, Hageman G. Age- related macular degeneration - emerging pathogenetic and therapeutic concepts. Ann Med. 2006;38:450–71.CrossRefGoogle Scholar
  16. 16.
    National Eye Institute. Facts about age-related macular degeneration. Website: Last reviewed: Sept 2015. Date accessed 30 Oct 2017.
  17. 17.
    Friedman D, O’Colmain B, Munoz B, Tomany S, McCarty C, de Jong P, Nemesure B, Mitchell P, Kempen J. Eye diseases prevalence research group. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122:564–72.CrossRefGoogle Scholar
  18. 18.
    Ambati J, Fowler B. Mechanism of age-related macular degeneration. Neuron. 2012;75:26–39.CrossRefGoogle Scholar
  19. 19.
    Wong T, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R, Fahrbach K, Probst C, Sledge I. The natural history and prognosis of Neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology. 2008;115:116–26.CrossRefGoogle Scholar
  20. 20.
    Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress on in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45:115–34.CrossRefGoogle Scholar
  21. 21.
    Klein R, Klein B, Tamany S, Meuer S, Huang G. Ten-year incidence and progression of age-related maculopathy: the beaver dam eye study. Ophthalmology. 2002;109:1767–79.CrossRefGoogle Scholar
  22. 22.
    Ding X, Patel M, Chan C-C. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res. 2009;28(1):1–18.CrossRefGoogle Scholar
  23. 23.
    Jager R, Mieler W, Miller J. Age-related macular degeneration. N Engl J Med. 2008;358:2606–17.CrossRefGoogle Scholar
  24. 24.
    Stewart MW. Optimal management of cytomegalovirus retinitis in patients with AIDS. Clin Ophthalmol. 2010;4:285–99.CrossRefGoogle Scholar
  25. 25.
    Gallant J, Moore R, Richman D, Keruly J, Chaisson R. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J Infect Dis. 1992;166(6):1223–7.CrossRefGoogle Scholar
  26. 26.
    Bloom J, Palestine A. The diagnosis of cytomegalovirus retinitis. Ann Intern Med. 1988;109(12):963–9.CrossRefGoogle Scholar
  27. 27.
    Studies of Ocular Complications of AIDS Research Group in collaboration with the AIDS Clinical Trials Group. Foscarnet-ganciclovir cytomegalovirus retinitis trial: 5. Clinical features of cytomegalovirus retinitis at diagnosis. Am J Ophthalmol. 1997;124:141–57.CrossRefGoogle Scholar
  28. 28.
    Pertel P, Hirschtick R, Phair J, Chmiel J, Poggensee L, Murphy R. Risk of developing cytomegalovirus retinitis in persons infected with the human immunodeficiency virus. J Acquir Immune Defic Syndr. 1992;5(11):1069–74.PubMedGoogle Scholar
  29. 29.
    National Eye Institute. Facts about diabetic eye diseases: diabetic retinopathy. Website: Last Reviewed: Sept 2015. Accessed 10 Oct 2017.
  30. 30.
    Tarr J, Kaul K, Chopra M, Kohner E, Chibber R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. 2013;2013:1–13.CrossRefGoogle Scholar
  31. 31.
    Wani J, Nasti A, Ashai M, Keng M, Qureshi T, Rashid S. Incidence of maculopathy in non-proliferative and proliferative diabetic retinopathy. JK-Practitioner. 2003;10(4):275–8.Google Scholar
  32. 32.
    Burditt A, Caird F, Draper G. The natural history of diabetic retinopathy. Q J Med. 1968;37(146):303–17.PubMedGoogle Scholar
  33. 33.
    Li Z-Y, Possin D, Milam A. Histology of bone spicule pigmentation in retinitis Pigmentosa. Ophthalmology. 1995;102(5):805–16.CrossRefGoogle Scholar
  34. 34.
    Dhoot D, Huo S, Yuan A, Xu D, Srivistava S, Ehlers J, Traboulsi E, Kaiser P. Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol. 2013;97:66–9.CrossRefGoogle Scholar
  35. 35.
    Kiernan D, Lim J. Topical drug delivery for posterior segment disease. Retina Today. 2010;5:48–51.Google Scholar
  36. 36.
    Lee V, Robinson J. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2(1):67–108.CrossRefGoogle Scholar
  37. 37.
    Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol. 2016;10:2433–41.CrossRefGoogle Scholar
  38. 38.
    Scruggs J, Wallace T, Hanna C. Route of absorption of drugs and ointment after application to the eye. Ann Ophthalmol. 1978;10(3):267–71.PubMedGoogle Scholar
  39. 39.
    Prausnitz M, Noonan J. Permeability of cornea, sclera and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–88.CrossRefGoogle Scholar
  40. 40.
    Boyer D. Drug delivery to the posterior segment: an update. Retina Today. 2013;8:52–6.
  41. 41.
    Hughes P, Olejnik O, Chang-Lin J, Wilson C. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57:2010–32.CrossRefGoogle Scholar
  42. 42.
    Inoue J, Oka M, Aoyama Y, Kobayashi S, Ueno S, Hada N, Takeda T, Takehana M. Effects of dorzolamide hydrochloride on ocular tissues. J Ocul Pharmacol Ther. 2004;20(1):1–13.CrossRefGoogle Scholar
  43. 43.
    Loftson T, Hreinsdottir D, Stefansson E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol. 2007;59(5):629–35.CrossRefGoogle Scholar
  44. 44.
    Acheampong A, Shackleton M, John B, Burke J, Wheeler L, Tang-Liu D. Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. Drug Metab Dispos. 2002;30(4):421–9.CrossRefGoogle Scholar
  45. 45.
    Sigurdsson H, Konraethsdottir F, Loftsson T, Stefansson E. Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand. 2007;85(6):598–602.CrossRefGoogle Scholar
  46. 46.
    Cunha-Vaz J. The blood-retinal barrier system: basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.CrossRefGoogle Scholar
  47. 47.
    Pitkänen K, Ranta VP, Moilanen H, Urtti A. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 2005;46(2):641–6.CrossRefGoogle Scholar
  48. 48.
    Guadana R, Ananthula H, Parenky A, Mitra A. Ocular drug delivery. AAPS J. 2010;12(3):348–60.CrossRefGoogle Scholar
  49. 49.
    Inoue M, Takeda K, Morita K, Yamada M, Tanigawara Y, Oguchi Y. Vitreous concentrations of triamcinolone acetonide in human eyes after intravitreal or Subtenon injection. Am J Ophthalmol. 2004;138:1046–8.CrossRefGoogle Scholar
  50. 50.
    Gragoudas E, Adamis A, Cunningham E Jr, Feinsod M, Guyer D. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351(27):2805–16.CrossRefGoogle Scholar
  51. 51.
    Ferrara N, Damico L, Shams N, Lowman H, Kim R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–70.CrossRefGoogle Scholar
  52. 52.
    Heier J, Brown D, Chong V, Korobelnik J, Kaiser P, Nguyen Q, Kirchhof B, Ho A, Ogura Y, Yancopoulos G, Stahl N, Vitti R, Berliner A, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U. Intravitreal Aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.CrossRefGoogle Scholar
  53. 53.
    Ventrice P, Leporini C, Aloe JF, Greco E, Leuzzi G, Marrazzo G, Scorcia GB, Bruzzichesi D, Nicola V, Scorcia V. Anti-vascular endothelial growth factor drugs safety and efficacy in ophthalmic diseases. J Pharmacol Pharmacother. 2013;4(Suppl1):S38–42.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Mitra A, Anand B, Duvvuri S. Drug delivery to the eye. In: Fischbarg J, editor. The biology of the eye. New York: Academic Press; 2006. p. 307–51.Google Scholar
  55. 55.
    Thrimawithana T, Young S, Bunt C, Green C, Alany R. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5/6):270–7.CrossRefGoogle Scholar
  56. 56.
    Ranta VP, Mannermaa E, Lummepuro K, Subrizi A, Laukkaren A, Antopolsky M, Murtomaki L, Hornof M, Urtti A. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148:42–8.CrossRefGoogle Scholar
  57. 57.
    Ghate D, Edelhauser H. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275–87.CrossRefGoogle Scholar
  58. 58.
    Cheruvu N, Amrite A, Kompella U. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49:333–41.CrossRefGoogle Scholar
  59. 59.
    Leder H, Jabs D, Galor A, Dunn J, Thorne J. Periocular triamcinolone acetonide injections for cystoid macular edema complicating noninfectious uveitis. Am J Ophthalmol. 2011;152(3):441–8.CrossRefGoogle Scholar
  60. 60.
    Ghate D, Brooks W, McCarey B, Edelhauser H. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48(5):2230–7.CrossRefGoogle Scholar
  61. 61.
    Kalsi G, Silver H, Rootman J. Ocular pharmacokinetics of dacarbazine following subconjunctival versus intravenous administration in rabbit. Can J Ophthalmol. 1991;26:247–51.PubMedGoogle Scholar
  62. 62.
    Review MD. Practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17:393–401.CrossRefGoogle Scholar
  63. 63.
    Geroski D, Edelhauser H. Transscleral drug delivery. In: Kompella U, Edlehauser H, editors. Drug product development for back of the eye. New York: Springer; 2011. p. 159–71.CrossRefGoogle Scholar
  64. 64.
    Olsen T, Aaberga S, Geroski D, Edelhauser H. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125(2):237–41.CrossRefGoogle Scholar
  65. 65.
    Keeley F, Morin J, Veseely S. Characterization of collagen from normal human sclera. Exp Eye Res. 1984;39:533–42.CrossRefGoogle Scholar
  66. 66.
    Raghava S, Hammond M, Kompella U. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1(1):99–114.CrossRefGoogle Scholar
  67. 67.
    Almazan A, Lee S, Ross A, Robinson M. Barriers to Transscleral drug delivery to the retina. In: Thassu D, Chader G, editors. Ocular drug delivery systems – barriers and application of nanoparticulate systems. Boca Raton: CRC Press; 2013. p. 134.Google Scholar
  68. 68.
    Durairaj C. Ocular pharmacokinetics. In: Whitcup S, Azar D, editors. Pharmacologic therapy of ocular disease-Handbook of Experimental Pharmacology: Springer Publishing; 2016. p. 31–55.Google Scholar
  69. 69.
    Kim S, Lutz R, Wang N, Robinson M. Transport barriers in Transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39:244–54.CrossRefGoogle Scholar
  70. 70.
    Shuler KR, Dioguardi PK, Henjy C, Nickerson J, Cruysberg L, Edelhauser H. Scleral permeability of small, single-stranded oligonucleotide. J Ocul Pharmacol Ther. 2004;20(2):159–68.CrossRefGoogle Scholar
  71. 71.
    Ambati J, Canakis CS, Miller JW, Gragoudas ES, Edwards A, Weissgold DJ, Kim I, Delori FC, Adamis AP. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41:1181–5.PubMedGoogle Scholar
  72. 72.
    Anderson O, Jackson T, Singh J, Hussain A, Marshall J. Human Transscleral albumin permeability and the effect of topographical location and donor age. Invest Ophthalmol Vis Sci. 2008;49(9):4041–5.CrossRefGoogle Scholar
  73. 73.
    Olsen TW, Edelhauser HF, Lim J, Geroski DH. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36(9):1893–903.PubMedGoogle Scholar
  74. 74.
    Shah S, Denham L, Elison J, Bhattacharjee P, Clement C, Huq T, Hill J. Drug delivery to the posterior segment of the eye for pharmacological therapy. Expert Rev Ophthalmol. 2010;5(1):75–93.CrossRefGoogle Scholar
  75. 75.
    Peyman G, Bok D. Peroxidase diffusion in the normal and laser-coagulated primate retina. Investig Ophthalmol. 1972;11:35–45.Google Scholar
  76. 76.
    Thakur A, Kadam R, Kompella U. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos. 2011;39(5):771–81.CrossRefGoogle Scholar
  77. 77.
    Leblanc B, Jezequel S, Davies T, Hanton G, Taradach C. Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol. 1998;28:124–32.CrossRefGoogle Scholar
  78. 78.
    Kim S, Csaky K, Wang N, Lutz R. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm Res. 2008;25(3):512–20.CrossRefGoogle Scholar
  79. 79.
    Hosseini K, Matsushima D, Johnson J, Widera G, Nyam K, Kim L, Xu Y, Yao Y, Cormier M. Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther. 2008;24(3):301–8.CrossRefGoogle Scholar
  80. 80.
    Robinson M, Lee S, Kim H, Lutz R, Galban C, Bungay P, Yuan P, Wang N, Kim J, Csaky K. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82(3):479–87.CrossRefGoogle Scholar
  81. 81.
    Karla P, Ako-Adounvo A-M. Advances in ocular iontophoresis research. Recent Pat Nanomed. 2012;2(2):126–32.CrossRefGoogle Scholar
  82. 82.
    Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006;110(3):479–89.CrossRefGoogle Scholar
  83. 83.
    Kompella U, Bandi N, Ayalasomayajula S. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44:1192–201.CrossRefGoogle Scholar
  84. 84.
    Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, Kashif PM, Badshah SF, Khan KU, Santos HA. Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm. 2017;530(1–2):326–45.CrossRefGoogle Scholar
  85. 85.
    Yasukawa T, Kimura MD, Tabat Y, Ogura Y. Biodegradable scleral plugs for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52(1):25–36.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesCollege of Pharmacy, Howard UniversityWashington, DCUSA

Personalised recommendations