Advertisement

Advances in the Field of Microbial Infection in the Cornea and the Role of Nanotechnology in Treating Keratitis

  • Aseel Al-Mashahedah
  • Rupinder Kaur Kanwar
  • Jagat Rakesh Kanwar
Chapter

Abstract

Microbial keratitis has long been associated with the activity of pathogenic microorganisms such as bacteria, fungi, parasites, and viruses, causing corneal epithelium disorder, decreased corneal material, and potential loss of vision. In fact, the ocular barriers have two contradictory roles during the infection pathway: the first involves protection of the eye from pathogens, while the second is involved in the obstruction of drug bioavailability. Here, we introduce a comprehensive overview of microbial keratitis as a world-wide concern and study some aspects of the mechanisms of microbial infection. We also review the role of the eye’s natural defenses toward pathogens. More importantly, we highlight the potential of nanoparticles as therapy against increased multi-drug resistant microbes and the ability of these treatments to achieve drug bioavailability. Hence, nano-therapy provides a promising treatment for microbial keratitis in the future.

Keywords

Microbial keratitis Eye defenses Immune response Organic nanoparticles Metal nanoparticles Nanomedicine Cornea Drug delivery Infection 

References

  1. 1.
    Shahaby AF, Alharthi AA, El Tarras AE. Potential bacterial pathogens of red eye infections and their antibiotic susceptibility patterns in Taif, KSA. Int J Curr Microbiol App Sci (IJCMAS). 2015;4(11):383–93.Google Scholar
  2. 2.
    Bermudez MA, et al. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Effect of CM-hUCESCs on wound healing in dry eye. Invest Ophthalmol Vis Sci. 2015;56(2):983–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Deepika J, Musaddiq M. Combination therapy on pathogenic bacteria from corneal ulcers. IJAR. 2015;1(11):878–81.Google Scholar
  4. 4.
    Singh D, et al. A retrospective study of fungal corneal ulcer from the western part of Uttar Pradesh. Int J Res Med Sci. 2015;3(4):880.CrossRefGoogle Scholar
  5. 5.
    Janin-Manificat H, et al. Development of ex vivo organ culture models to mimic human corneal scarring. Mol Vis. 2012;18:2896.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Putri AM, Heryati S, Nasution N. Characteristics and predisposing factors of bacterial corneal ulcer in the National Eye Center, Cicendo Eye Hospital, Bandung from January to December 2011. Althea Med J. 2015;2(3):443–7.CrossRefGoogle Scholar
  7. 7.
    Gebremariam TT. Bacteriology and risk factors of bacterial keratitis in Ethiopia. Health Sci J. 2015;9(5):1–6.Google Scholar
  8. 8.
    El-Sayed NM, Safar EH, Issa RM. Parasites as a cause of keratitis: need for increased awareness. Aperito J Ophthalmol. 2015;1:103.Google Scholar
  9. 9.
  10. 10.
    Bouhenni R, et al. Proteomics in the study of bacterial keratitis. Proteomes. 2015;3(4):496–511.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Akpek E, Gottsch J. Immune defense at the ocular surface. Eye. 2003;17(8):949–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Krishna S, et al. Study of bacteriological profile of corneal ulcers in patients attending VIMS, Ballari, India. Int J Curr Microbiol App Sci. 2016;5(7):200–5.CrossRefGoogle Scholar
  13. 13.
    Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res. 2016;6(4):399–413.PubMedGoogle Scholar
  14. 14.
    Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Devel Ther. 2016;10:277.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8(1):37–45.PubMedCrossRefGoogle Scholar
  16. 16.
    O’Brien KS, et al. Microbial keratitis: a community eye health approach. Community Eye Health. 2015;28(89):1.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite. 2015;22:10.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang N, et al. Bacterial spectrum and resistance patterns in corneal infections at a Tertiary Eye Care Center in South China. Int J Ophthalmol. 2016;9(3):384.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Daba KT. Bacteriology and risk factors of bacterial keratitis in Ethiopia. Archivos de Medicina. 2015;9(5):6.Google Scholar
  20. 20.
    Kautto L, et al. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears. Exp Eye Res. 2016;145:278–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Badawi AE, Moemen D, El-Tantawy NL. Epidemiological, clinical and laboratory findings of infectious keratitis at Mansoura Ophthalmic Center, Egypt. Int J Ophthalmol. 2017;10(1):61.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Giffard PM, et al. Chlamydia trachomatis genotypes in a cross-sectional study of urogenital samples from remote Northern and Central Australia. BMJ Open. 2016;6(1):e009624.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chhangte L, Pandey S, Umesh. Epidemiological and microbiological profile of infectious corneal ulcers in Tertiary Care Centre, Kumaon Region, Uttarakhand. Int J Sci Res Publ. 2015;5(2):5.Google Scholar
  24. 24.
    Ibrahim YW, Boase DL, Cree IA. How could contact lens wearers be at risk of Acanthamoeba infection? A review. J Opt. 2009;2(2):60–6.CrossRefGoogle Scholar
  25. 25.
    Schaefer F, et al. Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol. 2001;85(7):842–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Taube M, et al. Pattern recognition receptors in microbial keratitis. Eye. 2015;29(11):1399.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yuan Q, et al. Protective efficacy of a peptide derived from a potential adhesin of Pseudomonas aeruginosa against corneal infection. Exp Eye Res. 2016;143:39–48.PubMedCrossRefGoogle Scholar
  28. 28.
    Singh B, et al. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev. 2012;36(6):1122–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Song J, et al. Ocular diseases: immunological and molecular mechanisms. Int J Ophthalmol. 2016;9(5):780–8.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kumagai N, et al. Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2005;46(1):114–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou Z, et al. Role of the Fas pathway in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci. 2010;51(5):2537–47.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Redfern RL, McDermott AM. Toll-like receptors in ocular surface disease. Exp Eye Res. 2010;90(6):679–87.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hume EB, et al. A Staphylococcus aureus mouse keratitis topical infection model: cytokine balance in different strains of mice. Immunol Cell Biol. 2005;83(3):294–300.PubMedCrossRefGoogle Scholar
  34. 34.
    Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol. 2004;15(4):321–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Rautaraya B, et al. Diagnosis and treatment outcome of mycotic keratitis at a tertiary eye care center in eastern India. BMC Ophthalmol. 2011;11:39.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Truong D, et al. Microbial keratitis at an urban public hospital: a 10-year update. J Clin Exp Ophthalmol. 2015;6(6):7.CrossRefGoogle Scholar
  37. 37.
    Zhou Q, et al. Development of a novel ex vivo model of corneal fungal adherence. Graefes Arch Clin Exp Ophthalmol. 2011;249(5):693–700.PubMedCrossRefGoogle Scholar
  38. 38.
    Geethakumari P, Remya R, Reena A. Bacterial keratitis and fungal keratitis in South Kerala: a comparative study. Kerla J Ophthalmol. 2011;23(1):43–6.Google Scholar
  39. 39.
    Ritterband DC, et al. Fungal keratitis at the New York eye and ear infirmary. Cornea. 2006;25(3):264–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Tuft S, Tullo A. Fungal keratitis in the United Kingdom 2003–2005. Eye. 2009;23(6):1308–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Li C, et al. Expression of dectin-1 during fungus infection in human corneal epithelial cells. Int J Ophthalmol. 2014;7(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Guo H, Wu X. Innate responses of corneal epithelial cells against Aspergillus fumigatus challenge. FEMS Immunol Med Microbiol. 2009;56(1):88–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Feng X, et al. A rabbit model of Acanthamoeba keratitis that better reflects the natural human infection. Anat Rec. 2015;298(8):1509–17.CrossRefGoogle Scholar
  44. 44.
    Scheid P, Schwarzenberger R. Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res. 2012;111(1):479–85.PubMedCrossRefGoogle Scholar
  45. 45.
    El-Sayed NM, et al. Acanthamoeba DNA can be directly amplified from corneal scrapings. Parasitol Res. 2014;113(9):3267–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Sridhar U, et al. Ocular Microsporidiosis–our experience in a Tertiary Care Centre in North India. Open J Ophthalmol. 2015;5(03):130.CrossRefGoogle Scholar
  47. 47.
    Panjwani N. Pathogenesis of Acanthamoeba keratitis. Ocul Surf. 2010;8(2):70–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Clarke DW, Niederkorn JY. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol. 2006;22(4):175–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57(5):448–62.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jester JV, et al. Confocal microscopic analysis of a rabbit eye model of high-incidence recurrent herpes stromal keratitis. Cornea. 2016;35(1):81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chou TY, Hong BY. Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: background, effectiveness, tolerability, safety, and future applications. Ther Clin Risk Manag. 2014;10:665–81.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Karsten E, Watson SL, Foster LJR. Diversity of microbial species implicated in keratitis: a review. Open Ophthalmol J. 2012;6(1):110–24.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yun H, Lathrop KL, Hendricks RL. A central role for sympathetic nerves in herpes stromal keratitis in mice sympathetic nerves and HSK. Invest Ophthalmol Vis Sci. 2016;57(4):1749–56.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tsatsos M, et al. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol. 2016;44(9):824–37.PubMedCrossRefGoogle Scholar
  55. 55.
    Sobol EK, et al. Case–control study of herpes simplex eye disease: Bronx epidemiology of human immunodeficiency virus eye studies. Cornea. 2016;35(6):801–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Jiang Y, et al. Dendritic cell autophagy contributes to herpes simplex virus-driven stromal keratitis and immunopathology. MBio. 2015;6(6):e01426-15.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Akhtar J, Shukla D. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J. 2009;276(24):7228–36.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Uchino Y, et al. Impact of cigarette smoking on tear function and correlation between conjunctival goblet cells and tear MUC5AC concentration in office workers. Sci Rep. 2016;6:27699.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    de Souza GA, de Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006;7(8):R72.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cwiklik L. Tear film lipid layer: a molecular level view. Biochimic Biophys Acta Biomembr. 2016;1858(10):2421–30.CrossRefGoogle Scholar
  61. 61.
    King-Smith E, et al. The thickness of the tear film. Curr Eye Res. 2004;29(4–5):357–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Wu YT, et al. Human tear fluid reduces culturability of contact lens-associated Pseudomonas aeruginosa biofilms but induces expression of the virulence-associated type III secretion system. Ocul Surf. 2017;15(1):88–96.PubMedCrossRefGoogle Scholar
  63. 63.
    King-Smith PE, Hinel EA, Nichols JJ. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Invest Ophthalmol Vis Sci. 2010;51(5):2418–23.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tsubota K, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia Dry Eye Society. Ocul Surf. 2017;15(1):65–76.PubMedCrossRefGoogle Scholar
  65. 65.
    Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20(1):825–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Cubitt CL, Lausch RN, Oakes JE. Synthesis of type II interleukin-1 receptors by human corneal epithelial cells but not by keratocytes. Invest Ophthalmol Vis Sci. 2001;42(3):701–4.PubMedGoogle Scholar
  67. 67.
    Moore JE, et al. The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. Invest Ophthalmol Vis Sci. 2002;43(9):2905–15.PubMedGoogle Scholar
  68. 68.
  69. 69.
    Bolaños-Jiménez R, et al. Ocular surface as barrier of innate immunity. Open Ophthalmol J. 2015;9(1):49.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cruzat A, Pavan-Langston D, Hamrah P. In vivo confocal microscopy of corneal nerves: analysis and clinical correlation. Semin Ophthalmol. 2010;25(5–6):171–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tran MT, et al. Calcitonin gene-related peptide induces IL-8 synthesis in human corneal epithelial cells. J Immunol. 2000;164(8):4307–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Tran MT, Lausch RN, Oakes JE. Substance P differentially stimulates IL-8 synthesis in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2000;41(12):3871–7.PubMedGoogle Scholar
  73. 73.
    Ueno M, et al. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci. 2005;46(11):4097–106.PubMedCrossRefGoogle Scholar
  74. 74.
    Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Burg ND, Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol. 2001;99(1):7–17.PubMedCrossRefGoogle Scholar
  76. 76.
    Alberts B, et al. Molecular biology of the cell. 4th ed: Garland Science; 2002. Bray D. Cell movements: from molecules to motility. 2nd ed: Garland Science; 2000.Google Scholar
  77. 77.
    Moretta L, et al. Human natural killer cells: their origin, receptors and function. Eur J Immunol. 2002;32(5):1205–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Resch MD, et al. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J Ophthalmol. 2015;2015:1–8.CrossRefGoogle Scholar
  79. 79.
    Hamrah P, et al. Novel characterization of MHC class II–negative population of resident corneal Langerhans cell–type dendritic cells. Invest Ophthalmol Vsual Sci. 2002;43(3):639–46.Google Scholar
  80. 80.
    Unanue ER. Perspective on antigen processing and presentation. Immunol Rev. 2002;185(1):86–102.PubMedCrossRefGoogle Scholar
  81. 81.
    Rai M, et al. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol. 2016;120(3):527–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Hao J, et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.PubMedCrossRefGoogle Scholar
  83. 83.
    Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57(11):1595–639.PubMedCrossRefGoogle Scholar
  84. 84.
    Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm. 2011;411(1):69–77.PubMedCrossRefGoogle Scholar
  85. 85.
    Chaurasia SS, et al. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015;6(2):277–98.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Reimondez-Troitiño S, et al. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279–93.PubMedCrossRefGoogle Scholar
  87. 87.
    Tandon A, et al. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo. PLoS One. 2013;8(6):e66434.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Metruccio MM, et al. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion. Front Microbiol. 2016;7:871.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.PubMedCrossRefGoogle Scholar
  90. 90.
  91. 91.
    Rabea EI, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.PubMedCrossRefGoogle Scholar
  92. 92.
    Fu T, et al. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. J Liposome Res. 2017;27(3):228–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Tavaria FK, et al. Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol. 2013;40(12):1014–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Felt O, et al. Chitosan as tear substitute: a wetting agent endowed with antimicrobial efficacy. J Ocul Pharmacol Ther. 2000;16(3):261–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Lam SJ, et al. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.CrossRefGoogle Scholar
  96. 96.
    Khowdiary M, et al. Synthesis, characterization and biocidal efficiency of quaternary ammonium polymers silver nanohybrids against sulfate reducing bacteria. J Mol Liq. 2017;230:163–8.CrossRefGoogle Scholar
  97. 97.
    Jiao Y, et al. Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci. 2017;71:53–90.CrossRefGoogle Scholar
  98. 98.
    Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281–339.CrossRefGoogle Scholar
  99. 99.
    Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14(3):585–601.PubMedCrossRefGoogle Scholar
  100. 100.
    Morones JR, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.PubMedCrossRefGoogle Scholar
  101. 101.
    Ahmed S, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28.PubMedCrossRefGoogle Scholar
  102. 102.
    Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. 2016;2016:1–17.CrossRefGoogle Scholar
  103. 103.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–82.PubMedCrossRefGoogle Scholar
  104. 104.
    Ninganagouda S, et al. Growth kinetics and mechanistic action of reactive oxygen species released by silver nanoparticles from Aspergillus Niger on Escherichia coli. Biomed Res Int. 2014;2014:1–9.CrossRefGoogle Scholar
  105. 105.
    Willcox MD, et al. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. J Opt. 2010;3(3):143–8.CrossRefGoogle Scholar
  106. 106.
    Penders J, et al. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine. 2017;12:2457.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shamaila S, et al. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano. 2016;6(4):71108.Google Scholar
  108. 108.
    Hetrick EM, et al. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009;30(14):2782–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Han G, et al. Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One. 2009;4(11):e7804.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aseel Al-Mashahedah
    • 1
  • Rupinder Kaur Kanwar
    • 1
  • Jagat Rakesh Kanwar
    • 1
  1. 1.Nanomedicine Laboratory of Immunology and Molecular Biochemical Research (NLIMBR), Centre Molecular and Medical Research (CMMR), School of Medicine, Deakin UniversityWaurn PondsAustralia

Personalised recommendations