Advertisement

Classification of Seismic-Liquefaction Potential Using Friedman’s Stochastic Gradient Boosting Based on the Cone Penetration Test Data

  • Jian Zhou
  • Xin Chen
  • Mingzhen Wang
  • Enming Li
  • Hui Chen
  • Xiuzhi Shi
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

The analysis of liquefaction potential of soil due to an earthquake is a classical problem for civil and geotechnical engineers. In this paper, Friedman’s stochastic gradient boosting (FSGB) method is introduced and investigated for the prediction of seismic liquefaction potential of soil based on the cone penetration test (CPT) data. The SGB models were developed and validated on a relatively large dataset comprising 226 field records of liquefaction performance and CPT measurements. The database contains the information about effective vertical stress, cone tip resistance, total vertical stress, sleeve friction ratio, depth of potentially liquefiable soil layer, earthquake magnitude and maximum horizontal ground surface acceleration. To find the most suitable model, several different combinations of above input parameters were tested to assess the usefulness of SGBs for liquefaction assessment using CPT data. SGBs are based on classification & regression trees with ensemble learning strategy and found to work well in comparison to artificial neural network and support vector machine models. The developed SGB provides a viable tool for practicing engineers to determine the liquefaction potential of soil.

Keywords

Liquefaction Cone penetration test (CPT) Stochastic gradient boosting 

Notes

Acknowledgments

The authors appreciate the support of the State Key Research Development Program of China (Grants 2016YFC0600706 and 2017YFC0602902) and the Sheng Hua Lie Ying Program of Central South University (Principle Investigator: Jian Zhou).

References

  1. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)CrossRefGoogle Scholar
  2. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)Google Scholar
  3. Goh, A.T.: Neural-network modeling of CPT seismic liquefaction data. J. Geotech. Eng. 122, 70–73 (1996)CrossRefGoogle Scholar
  4. Goh, A.T., Goh, S.: Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput. Geotech. 34, 410–421 (2007).  https://doi.org/10.1016/j.compgeo.2007.06.001CrossRefGoogle Scholar
  5. Hastie, T., Tibshirani, R., Jerome, J., Friedman, H.: The Elements of Statistical Learning, vol. 1. p. 339. Springer, New York, (2001)CrossRefGoogle Scholar
  6. Hu, J.L., Tang, X.W., Qiu, J.N.: Analysis of the influences of sampling bias and class imbalance on performances of probabilistic liquefaction models. Int. J. Geomech. 04016134 (2016)Google Scholar
  7. Idriss, I.M., Boulanger, R.W.: Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn. Earthq. Eng. 26(2), 115–130 (2006)CrossRefGoogle Scholar
  8. Javadi, A.A., Ahangar-Asr, A., Johari, A., Faramarzi, A., Toll, D.: Modelling stress–strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Eng. Appl. Artif. Intell. 25, 926–933 (2012)CrossRefGoogle Scholar
  9. Juang, C.H., Yuan, H., Lee, D.-H., Lin, P.-S.: Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 129, 66–80 (2003)CrossRefGoogle Scholar
  10. Kaveh, A., Hamze-Ziabari, S.M., Bakhshpoori, T.: Patient rule-induction method for liquefaction potential assessment based on CPT data. Bull. Eng. Geol. Environ. 1–17 (2016)Google Scholar
  11. Kohestani, V.R., Hassanlourad, M., Ardakani, A.: Evaluation of liquefaction potential based on CPT data using random forest. Nat. Hazards 79(2), 1079–1089 (2015)CrossRefGoogle Scholar
  12. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)CrossRefGoogle Scholar
  13. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013)CrossRefGoogle Scholar
  14. Lai, S.Y., Hsu, S.C., Hsieh, M.J.: Discriminant model for evaluating soil liquefaction potential using cone penetration test data. J. Geotech. Geoenviron. Eng. 130(12), 1271–1282 (2004)CrossRefGoogle Scholar
  15. Lai, S.Y., Chang, W.J., Lin, P.S.: Logistic regression model for evaluating soil liquefaction probability using CPT data. J. Geotech. Geoenviron. Eng. 132(6), 694–704 (2006)CrossRefGoogle Scholar
  16. Liao, S.S., Veneziano, D., Whitman, R.V.: Regression models for evaluating liquefaction probability. J. Geotech. Eng. 114, 389–411 (1988)CrossRefGoogle Scholar
  17. Lu, J., Lu, D., Zhang, X., Bi, Y., Cheng, K., Zheng, M., Luo, X.: Estimation of elimination half-lives of organic chemicals in humans using gradient boosting machine. Biochim. Biophys. Acta (BBA) 1860(11), 2664–2671 (2016)CrossRefGoogle Scholar
  18. Moss, R.E., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A., Cetin, K.O.: CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 132(8), 1032–1051 (2006)CrossRefGoogle Scholar
  19. Oommen, T., Baise, L.G., Vogel, R.: Validation and application of empirical liquefaction models. J. Geotech. Geoenviron. Eng. 136(12), 1618–1633 (2010)CrossRefGoogle Scholar
  20. Pal, M.: Support vector machines-based modelling of seismic liquefaction potential. Int. J. Numer. Anal. Meth. Geomech. 30, 983–996 (2006)CrossRefGoogle Scholar
  21. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, https://www.R-project.org/. Accessed 31 Mar 2017
  22. Samui, P.: Seismic liquefaction potential assessment by using relevance vector machine. Earthq. Eng. Eng. Vib. 6, 331–336 (2007)CrossRefGoogle Scholar
  23. Seed, H.B., Idriss, I.M.: Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div. 97, 1249–1273 (1971)Google Scholar
  24. Xue, X., Yang, X.: Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction. Nat. Hazards 67(2), 901–917 (2013)CrossRefGoogle Scholar
  25. Yazdi, J.S., Kalantary, F., Yazdi, H.S.: Investigation on the effect of data imbalance on prediction of liquefaction. Int. J. Geomech. 13(4), 463–466 (2012)CrossRefGoogle Scholar
  26. Zhou, J., Li, X.B., Mitri, H.S.: Comparative performance of six supervised learning methods for the development of models of pillar stability. Nat. Hazards 79(1), 291–316 (2015)CrossRefGoogle Scholar
  27. Zhou, J., Shi, X.Z., Huang, R.D., Qiu, X.Y., Chen, C.: Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines. Trans. Nonferrous Met. Soc. China 26(7), 1938–1945 (2016a)CrossRefGoogle Scholar
  28. Zhou, J., Shi, X.Z., Li, X.B.: Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control 22(19), 3986–3997 (2016b)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jian Zhou
    • 1
  • Xin Chen
    • 1
  • Mingzhen Wang
    • 1
  • Enming Li
    • 1
  • Hui Chen
    • 1
  • Xiuzhi Shi
    • 1
  1. 1.School of Resources and Safety EngineeringCentral South UniversityChangshaChina

Personalised recommendations