Advertisement

Oblivious Dynamic Searchable Encryption on Distributed Cloud Systems

  • Thang Hoang
  • Attila A. Yavuz
  • F. Betül Durak
  • Jorge Guajardo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10980)

Abstract

Dynamic Searchable Symmetric Encryption (DSSE) allows search/update operations over encrypted data via an encrypted index. However, DSSE has been shown to be vulnerable to statistical inference attacks, which can extract a significant amount of information from access patterns on encrypted index and files. While generic Oblivious Random Access Machine (ORAM) can hide access patterns, it has been shown to be extremely costly to be directly used in DSSE setting.

By exploiting the distributed cloud infrastructure, we develop a series of Oblivious Distributed DSSE schemes called \( \text {ODSE}\), which enable oblivious access on the encrypted index with a high security and improved efficiency over the use of generic ORAM. Specifically, ODSE schemes are \(3\times \)\(57\times \) faster than applying the state-of-the-art generic ORAMs on encrypted dictionary index in real network settings. One of the proposed ODSE schemes offers desirable security guarantees such as information-theoretic security with robustness against malicious servers. These properties are achieved by exploiting some of the unique characteristics of searchable encryption and encrypted index, which permits us to harness the computation and communication efficiency of multi-server PIR and Write-Only ORAM simultaneously. We fully implemented \( \text {ODSE}\) and have conducted extensive experiments to assess the performance of our proposed schemes in a real cloud environment.

Keywords

Searchable encryption Write-Only ORAM Multi-server PIR Privacy-preserving clouds 

References

  1. 1.
  2. 2.
    Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptotically tight bounds for composing ORAM with PIR. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 91–120. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54365-8_5CrossRefGoogle Scholar
  3. 3.
    Blass, E.-O., Mayberry, T., Noubir, G., Onarlioglu, K.: Toward robust hidden volumes using write-only oblivious ram. In: Proceedings of the 2014 ACM CCS, pp. 203–214. ACM (2014)Google Scholar
  4. 4.
    Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable encryption. ACM Comput. Surv. (CSUR) 47(2), 18 (2015)Google Scholar
  5. 5.
    Bosch, C., Peter, A., Leenders, B., Lim, H.W., Tang, Q., Wang, H., Hartel, P., Jonker, W.: Distributed searchable symmetric encryption. In: 12th International Conference on Privacy, Security and Trust (PST), pp. 330–337. IEEE (2014)Google Scholar
  6. 6.
    Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. Technical report, IACR Cryptology ePrint Archive 2017 (2017)Google Scholar
  7. 7.
    Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)CrossRefGoogle Scholar
  8. 8.
    Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: Proceedings of the 22nd ACM CCS, pp. 668–679 (2015)Google Scholar
  9. 9.
    Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner, M.: Dynamic searchable encryption in very-large databases: data structures and implementation. IACR Cryptology ePrint Archive 2014:853 (2014)Google Scholar
  10. 10.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM (JACM) (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM CCS, pp. 79–88. ACM (2006)Google Scholar
  12. 12.
    Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: round-optimal oblivious RAM with applications to searchable encryption. IACR Cryptology ePrint Archive 2015:1010 (2015)Google Scholar
  13. 13.
    Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE Symposium on Security and Privacy, pp. 131–148. IEEE (2007)Google Scholar
  14. 14.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 310–320. ACM (2014)Google Scholar
  15. 15.
    Hoang, T., Yavuz, A., Guajardo, J.: Practical and secure dynamic searchable encryption via oblivious access on distributed data structure. In: Proceedings of the 32nd Annual Computer Security Applications Conference (ACSAC). ACM (2016)Google Scholar
  16. 16.
    Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: Ramification, attack and mitigation. In: NDSS (2012)Google Scholar
  17. 17.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 965–976. ACM (2012)Google Scholar
  18. 18.
    Liu, C., Zhu, L., Wang, M., Tan, Y.-A.: Search pattern leakage in searchable encryption: attacks and new construction. Inf. Sci. 265, 176–188 (2014)CrossRefGoogle Scholar
  19. 19.
    Moataz, T., Blass, E.-O., Mayberry, T.: CHf-ORAM: a constant communication ORAM without homomorphic encryption. Technical report, Cryptology ePrint Archive, Report 2015/1116 (2015)Google Scholar
  20. 20.
    Moataz, T., Ray, I., Ray, I., Shikfa, A., Cuppens, F., Cuppens, N.: Substring search over encrypted data. J. Comput. Secur., 1–30 (2018, preprint)CrossRefGoogle Scholar
  21. 21.
    Naveed, M.: The fallacy of composition of oblivious ram and searchable encryption. Cryptology ePrint Archive, Report 2015/668 (2015)Google Scholar
  22. 22.
    Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas, S.: Ring ORAM: closing the gap between small and large client storage oblivious RAM. IACR Cryptology ePrint Archive (2014)Google Scholar
  23. 23.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society (2000)Google Scholar
  25. 25.
    Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of the 2013 ACM CCS, pp. 299–310. ACM (2013)Google Scholar
  26. 26.
    Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. In: ACM SIGSAC AsiaCCS, pp. 71–82. ACM (2013)Google Scholar
  27. 27.
    Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over encrypted cloud data. In: IEEE 30th International Conference on Distributed Computing Systems, pp. 253–262. IEEE (2010)Google Scholar
  28. 28.
    Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with minimal leakage and efficient updates on commodity hardware. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31301-6_15CrossRefGoogle Scholar
  29. 29.
    Zhang, R., Xue, R., Yu, T., Liu, L.: Dynamic and efficient private keyword search over inverted index-based encrypted data. ACM Trans. Internet Technol. (TOIT) 16(3), 21 (2016)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 707–720 (2016)Google Scholar
  31. 31.
    Zhou, F., Li, Y., Liu, A.X., Lin, M., Xu, Z.: Integrity preserving multi-keyword searchable encryption for cloud computing. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 153–172. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47422-9_9CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Thang Hoang
    • 1
  • Attila A. Yavuz
    • 1
  • F. Betül Durak
    • 2
  • Jorge Guajardo
    • 3
  1. 1.EECSOregon State UniversityCorvallisUSA
  2. 2.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Robert Bosch RTC—LLCPittsburghUSA

Personalised recommendations