Environmental Adaptations: Encystment and Cyclomorphosis

  • Roberto Guidetti
  • Nadja MøbjergEmail author
Part of the Zoological Monographs book series (ZM, volume 2)


Stressful environmental conditions generally limit animal survival, growth, and reproduction and may induce dormancy in the form of various resting stages. Tardigrades represent one of a few animal phyla in which different forms of dormancy are frequently encountered. One of these forms, cryptobiosis, a quick response to sudden changes in the environment, has gained a great deal of attention, whereas much less is known of the slower emerging form of dormancy, diapause. In this review we present the current knowledge of diapause in tardigrades.

Diapause in tardigrades, represented by encystement and cyclomorphosis, is likely controlled by exogenous stimuli, such as temperature and oxygen tension, and perhaps also by endogenous stimuli. These stimuli initiate and direct successive phases of deep morphological transformations within the individual. Encystment is characterized by tardigrades that lie dormant—in diapause—within retained cuticular coats (exuvia). The ability to form cysts is likely widespread but presently only confirmed for a limited number of species.

In tardigrades, cyclomorphosis was first reported as a characteristic of the marine eutardigrade genus Halobiotus. This phenomenon is characterized by pronounced seasonal morphological changes and in Halobiotus involves stages with an extra protecting cuticle. Cyst formation in moss-dwelling limnic species may also occur as part of a seasonal cyclic event and can thus be viewed as part of a cyclomorphosis. Therefore, whereas diapause generally seems to be an optional response to environmental changes, it may also be an obligate part of the life cycle.

The evolution of encystment and cyclomorphosis finds its starting point in the molting process. Both phenomena represent an adaptation to environmental constraints. Notably, the evolution of diapause is not necessarily an alternative to cryptobiosis, and some tardigrades may enter both forms of dormancy. The simultaneous occurrence of several adaptive strategies within tardigrades has largely increased the resistance of these enigmatic animals toward extreme environmental stress.


  1. Bertolani R (1976) Osservazioni cariologiche su Isohypsibius augusti (Murray, 1907) e I. megalonyx Thulin, 1928 (Tardigrada) e ridescrizione delle due specie. Boll Zool 43:221–234CrossRefGoogle Scholar
  2. Bertolani R (1982) 15. Tardigradi (Tardigrada). Guide per il riconoscimento delle specie animali delle acque interne Italiane. Consiglio Nazionale Delle Ricerche, Verona, Italy, p 104Google Scholar
  3. Biserov VI (1992) A new genus and three new species of tardigrades (Tardigrada: Eutardigrada) from the USSR. Boll Zool 59:95–103CrossRefGoogle Scholar
  4. Càceres CE (1997) Dormancy in invertebrates. Invertebr Biol 116:371–383CrossRefGoogle Scholar
  5. Clausen LKB, Andersen KN, Hygum TL, Jørgensen A, Møbjerg N (2014) First record of cysts in the tidal tardigrade Echiniscoides sigismundi. Helgol Mar Res 68(4):531–537. CrossRefGoogle Scholar
  6. Crowe JH, Newell IM, Thomson WW (1971) Cuticle formation in the tardigrade, Macrobiotus areolatus Murray. J Microsc 11:121–132Google Scholar
  7. Denlinger DL, Tanaka S (1999) Diapause. In: Knobil E, Neill JD (eds) Encyclopedia of Reproduction, vol 1. Academic Press, San Diego, pp 863–872Google Scholar
  8. Diaz Cosin DJ, Riuz MP, Ramajo M, Gutiérrez M (2006) Is the aestivation of the earthworm Hormogaster elisae a paradiapause? Invertebr Biol 125:250–255CrossRefGoogle Scholar
  9. Doyère M (1840) Mémoiresur les Tardigrades. Ann Sci Naturelles, Paris, Ser 2, Zool 14:269–361Google Scholar
  10. Eibye-Jacobsen J (1997) Development, ultrastructure and function of the pharynx of Halobiotus crispae Kristensen, 1982 (Eutardigrada). Acta Zool 78:329–347CrossRefGoogle Scholar
  11. Eibye-Jacobsen J (2001) Are the supportive structures of the tardigrade pharynx homologous throughout the entire group? J Zool Syst Evol Research 39:1–11CrossRefGoogle Scholar
  12. Guidetti R, Boschini D, Rebecchi L, Bertolani R (2006) Encystment processes and “Matrioshka-like stage” cyst in a moss-dwelling and in a limnic species of eutardigrades (Tardigrada). Hydrobiologia 558:9–21CrossRefGoogle Scholar
  13. Guidetti R, Boschini D, Altiero T, Bertolani R, Rebecchi L (2008) Diapause in tardigrades: a study of factors involved in encystment. J Exp Biol 211:2296–2302CrossRefGoogle Scholar
  14. Gullan PJ, Cranston PS (2005) The Insects: an outline of entomology, 3rd edn. Blackwell, Oxford, p 505Google Scholar
  15. Guidetti R, Altiero T, Rebecchi L (2011) On dormancy strategies in tardigrades. J Insect Physiol 57(5):567–576CrossRefGoogle Scholar
  16. Halberg KA, Persson D, Ramløv H, Westh P, Kristensen RM, Møbjerg N (2009) Cyclomorphosis in Tardigrada: adaptation to environmental constraints. J Exp Biol 212(17):2803–2811CrossRefGoogle Scholar
  17. Halberg KA, Persson DK, Jørgensen A, Kristensen RM, Møbjerg N (2013a) Ecology and thermal tolerance of the marine tardigrade Halobiotus crispae (Eutardigrada: Isohypsibiidae). Mar Biol Res 9(7):716–724CrossRefGoogle Scholar
  18. Halberg KA, Larsen KW, Jørgensen A, Ramløv H, Møbjerg N (2013b) Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes. J Exp Biol 216:1235–1243CrossRefGoogle Scholar
  19. Hansen JG, Katholm AK (2002) A study of the genus Amphibolus from Disko Island with special attention on the life cycle of Amphibolus nebulosus (Eutardigrada: Eohypsibiidae). In: Hansen JG (ed) Arctic Biology Field Course Quqertarsuaq 2002. Zoological Museum University of Copenhagen, Copenhagen, pp 129–163Google Scholar
  20. Heinis F (1910) Systematik und Biologie der Moosebewohnen den Rhizopoden, Rotatorien und Tardigraden usw. Archiv für Hydrobiologie und Plankton kund: 51–115Google Scholar
  21. Hygum TL, Fobian D, Kamilari M, Jørgensen A, Schiøtt M, Grosell M, Møbjerg N (2017) Comparative investigation of copper tolerance and identification of putative tolerance related genes in tardigrades. Front Physiol 8:95. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Iharos G (1968) The scientific results of the Hungarian soil zoological expeditions to South America: 6. Ein neue Tardigraden-Gattung von mariner Verwandtschaft aus dem chilenischen Altiplano. Opusc Zool 7:357–361Google Scholar
  23. Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127CrossRefGoogle Scholar
  24. Kristensen RM (1982) The first record of cyclomorphosis in Tardigrada based on a new genus and species from Arctic meiobenthos. J Zool Syst Evol 20:249–270CrossRefGoogle Scholar
  25. Kristensen RM (1987) Generic revision of the Echiniscidae (Heterotardigrada) with a discussion of the origin of the family. In: Biology of tardigrades, pp 261–335Google Scholar
  26. Lauterborn R (1906) Demostrationen aus der Fauna ders Oberreheins und seiner Umgebung. Verh Dtsch Zool Ges:265–268Google Scholar
  27. Manicardi GC (1989) Two new species of soil moss eutardigrades (Tardigrada) from Canada. Can J Zool 67(9):2282–2285CrossRefGoogle Scholar
  28. Marcus E (1929) Tardigrada. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs, vol 5. Akademische Verlagsgesellschaft, Leipzig, Germany, p 608Google Scholar
  29. Marcus E (1936) Tardigrada. In: Schulze FE, Kükenthal W, Heider K (eds) Das Tierreich, vol 66. Walter de Gruyter Berlin und Leipzig, Germany, pp 1–340Google Scholar
  30. Marley NJ, Wright DE (1996) Amphibolus weglarskae (Dastych), a new addition to the Tardigrada of Iceland with an updated checklist of Icelandic species (Eohypsibiidae, Eutardigrada). Quekett J Microsc 37:541–545Google Scholar
  31. Maucci W (1987) A contribution to the knowledge of the North American Tardigrada with emphasis on the fauna of Yellowstone National Park (Wyoming). In: Biology of Tardigrades. Selected Symposia and Monographs UZI, vol 1, pp 187–210Google Scholar
  32. McInnes SJ, Pugh PJA (1999) Zonation in Antarctic lake-dwelling benthic meiofauna, with emphasis on the Tardigrada. Zool Anz 238:283–288Google Scholar
  33. Møbjerg N, Jørgensen A, Eibye-Jacobsen J, Halberg KA, Persson D, Kristensen RM (2007) New records on cyclomorphosis in the marine eutardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). J Limnol 66(Suppl 1):132–140CrossRefGoogle Scholar
  34. Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol 202(3):409–420CrossRefGoogle Scholar
  35. Murray J (1907a) The encystment of Macrobiotus. Fortschr Zool 11:4–11Google Scholar
  36. Murray J (1907b) Encystment of Tardigrada. Trans R Soc Edinb 45:837–854CrossRefGoogle Scholar
  37. Murray J (1907c) Some Tardigrada of the Sikkim Himalaya. J R Microsc Soc 3:269–273CrossRefGoogle Scholar
  38. Murray J (1907d) XXIV – Scottish Tardigrada, collected by the Lake Survey. Trans R Soc Edinb 45:641–668CrossRefGoogle Scholar
  39. Nederström P (1919) Die bisjetzt aus Finnland bekannten Tardigraden. Act Soc Fraun Flor Fenn 46(8):1–15Google Scholar
  40. Pigòn A, Węglarska B (1953) The respiration of Tardigrada: a study in animal anabiosis. Bull Acad Pol Sci Biol 1:69–72Google Scholar
  41. Rahm G (1925) Die Cysten bildung bei den WasserbewohnendenTardigraden. Int Ver Theor Angew Limnol Verh 3:364–371Google Scholar
  42. Rahm G (1926) Die Trockenstarre (Anabiose) der Moostierwelt. Biol Cent Bl 46:452–477Google Scholar
  43. Rahm G (1927) Tardigrada Biolog d Tiere Deutschland 22:1–56Google Scholar
  44. Ramazzotti G (1959) Tardigradi in terreni prativi. Atti Soc Ital Nat, Milano 98:199–210Google Scholar
  45. Ramazzotti G, Maucci W (1983) Il Phylum Tardigrada. Terza edizione riveduta e corretta. Mem Isit Ital Idrobiol Dott Marco De Marchi 41:1–1012Google Scholar
  46. Rebecchi L, Bertolani R (1994) Maturative pattern of ovary and testis in eutardigrades of freshwater and terrestrial habitats. Invertebr Reprod Dev 26:107–117CrossRefGoogle Scholar
  47. Richters F (1909) Tardigraden-Studien. Ber Senckenb Naturforsch Ges 40:28–45Google Scholar
  48. Richters F, Krumbach T (1926) Tardigrada. Handbuch der Zoologie 3:1–68Google Scholar
  49. Rost-Roszkowska M, Poprawa I (2008) Ultrastructure of the midgut epithelium in Dactylobiotus dispar (Tardigrada: Eutardigrada) during encystation. Zool Polon 53(1-4):19–25CrossRefGoogle Scholar
  50. Schill RO, Huhn F, Köhler HR (2007) The first record of tardigrades (Tardigrada) from the Sinai Peninsula, Egypt. Zool Middle East 42(1):83–88CrossRefGoogle Scholar
  51. Schultze M (1865) Echiniscus sigismundi, ein Arctiscoide der Nordsee. Arch Mikrosk Anat 1(1):428–436CrossRefGoogle Scholar
  52. Sommerville RI, Davey KG (2002) Diapause in parasitic nematodes: a review. Can J Zool 80:1817–1840CrossRefGoogle Scholar
  53. Stark S, Kristensen RM (1999) Tardigrades in the soil of Greenland. Ber Polarforsch 330:44–63Google Scholar
  54. Szymańska B (1995) Encystment in the tardigrade Dactylobiotus dispar (Murray, 1907) (Tardigrada: Eutardigrada). Part 1: Observation of leaving animals and structure of cyst. Zool Pol 40:91–102Google Scholar
  55. Thulin G (1911) Beiträge zur Kenntnis der Tardigraden fauna Schwedens. Ark Zool 7(16):1–60Google Scholar
  56. Thulin G (1928) Über die Phylogenie und das System der Tardigraden. Hereditas 11:207–266CrossRefGoogle Scholar
  57. Urbanowicz C (1925) Sur la variabilité de Macrobiotus oberhaeuseri. Bull biol Fr Bel 59:124–142Google Scholar
  58. Von Reukauf EW (1912) Ein neuer Wasserbär, Macrobiotus ferdinandi (Reukauf). Zool Anz 39:352–353Google Scholar
  59. von Wenck V (1914) Entwicklungs geschichtliche Untersuchungen an Tardigraden (Macrobiotus lacustris Duj.). Zool Jahrb Anat 37:465–514Google Scholar
  60. Węglarska B (1957) On the encystation in Tardigrada. Zool Pol 8:315–325Google Scholar
  61. Węglarska B (1970) Hypsibius (Isohypsibius) smreczynskii spec. nov., a new species of fresh-water tardigrade. Zesz Nauk Uniw Jagiellonsk Pr Zool 16:107–114Google Scholar
  62. Wełnicz W, Grohme MA, Kaczmarek L, Schill R, Frohme M (2011) Anhydrobiosis in tardigrades – the last decade. J Insect Physiol 57:577–583CrossRefGoogle Scholar
  63. Westh P, Kristensen RM (1992) Ice formation in the freeze-tolerant eutardigrades Adorybiotus coronifer and Amphibolos nebulosus studied by differential scanning calorimetry. Polar Biol 12:693–699CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations