Environmental Adaptations: Radiation Tolerance

  • K. Ingemar JönssonEmail author
  • Eliana B. Levine
  • Andrzej Wojcik
  • Siamak Haghdoost
  • Mats Harms-Ringdahl
Part of the Zoological Monographs book series (ZM, volume 2)


Several studies in different species have documented that tardigrades are among the most radiation-tolerant animals on Earth, surviving doses of ionizing radiation on the order of kGy. Both low-LET and high-LET radiation have been used with no apparent differences in the tolerance of the animals. Tolerance to ionizing radiation in tardigrades also seems to be independent of whether the animal has entered a dry anhydrobiotic state or is hydrated with normal activity. However, when exposed to UV radiation, desiccated tardigrades show a higher tolerance than hydrated animals. Recent studies in several species have shown that tardigrade embryos have considerably lower tolerance to ionizing radiation compared to adults, and embryos in the early stage of development are clearly more sensitive to radiation than those in the late developmental stage. The molecular mechanisms behind radiation tolerance in tardigrades are still largely unclear, but available evidence suggests that mechanisms related to both the avoidance of DNA damage and the repair of damage are involved.



The current review was financially supported by the Swedish Space Research Board (grant 87/11 to AW).


  1. Altiero T, Bertolani R, Rebecchi L (2010) Hatching phenology and resting eggs in tardigrades. J Zool 280:290–296CrossRefGoogle Scholar
  2. Altiero T, Guidetti R, Caselli V, Cesari M, Rebecchi L (2011) Ultraviolet radiation tolerance in hydrated and desiccated eutardigrades. J Zool Syst Evol Res 49(Suppl 1):104–110CrossRefGoogle Scholar
  3. Battista JR, Earl AM, Park M-J (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365PubMedCrossRefGoogle Scholar
  4. Beltrán-Pardo E, Jönsson KI, Wojcik A, Haghdoost S, Harms-Ringdahl M, Bermúdez-Cruz RM, Bernal Villegas JE (2013a) Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development. PLoS One 8(9):e72098PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beltrán-Pardo EA, Jönsson KI, Wojcik A, Haghdoost S, Bermúdez Cruz RM, Bernal Villegas JE (2013b) Sequence analysis of the DNA-repair gene rad51 in the tardigrades Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi. J Limnol 72(s1):80–91Google Scholar
  6. Beltrán-Pardo E, Jönsson KI, Harms-Ringdahl M, Haghdoost S, Wojcik A (2015) Differences in tolerance to gamma radiation in the tardigrade Hypsibius dujardini from embryo to adult correlate inversely with cellular proliferation. PLoS One 10(7):e0133658PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bergonié J, Tribondeau L (1906) De Quelques Résultats de la Radiotherapie et Essai de Fixation d'une Technique Rationnelle. C R Acad Sci 143:983–985Google Scholar
  8. Bertolani R, Rebecchi L, Jönsson KI, Borsari S, Guidetti R, Altiero T (2001) Tardigrades as a model for experiences of animal survival in the space. Micrograv Space Station Util 2:211–212Google Scholar
  9. Bolus NE (2001) Basic review of radiation biology and terminology. J Nucl Med Technol 29(2):67–73PubMedGoogle Scholar
  10. Boothby TC, Tapia H, Brozena AH, Piszkiewicz S, Smith AE, Giovannini I, Rebecchi L, Pielak GJ, Koshland D, Goldstein B (2017) Tardigrades use intrinsically disordered proteins to survive desiccation. Mol Cell 65(6):975–984.e5PubMedPubMedCentralCrossRefGoogle Scholar
  11. Datkhile KD, Dongre TK, Mukhopadhyaya R, Nath BB (2009) Gamma radiation tolerance of a tropical species of midge, Chironomus ramosus Chaudhuri (Diptera: Chironomidae). Int J Radiat Biol 85:495–503PubMedCrossRefGoogle Scholar
  12. Eker AP, Quayle C, Chaves I, van der Horst GT (2009) DNA repair in mammalian cells: direct DNA damage reversal: elegant solutions for nasty problems. Cell Mol Life Sci 66(6):968–980PubMedCrossRefGoogle Scholar
  13. Fernandez C, Vasanthan T, Kissoon N, Karam G, Duquette N, Seymour C, Stone JR (2016) Radiation tolerance and bystander effects in the eutardigrade species Hypsibius dujardini (Parachaela: Hypsibiidae). Zool J Linn Soc 178:919–923CrossRefGoogle Scholar
  14. Förster F, Beisser D, Grohme MA, Liang C, Mali B, Siegl AM, Engelmann JC, Shkumatov AV, Schokraie E, Müller T, Schnölzer M, Schill RO, Frohme M, Dandekar T (2012) Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinform Biol Insights 6:69–96PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559CrossRefGoogle Scholar
  16. Gąsiorek P, Stec D, Morek W, Michalczyk Ł (2018) An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada). Zootaxa 4415(1):45PubMedCrossRefGoogle Scholar
  17. Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Nat Acad Sci USA 105:5139–5144PubMedCrossRefGoogle Scholar
  18. Gusev O, Nakahara Y, Vanyagina V, Malutina L, Cornette R, Sakashita T, Hamada N, Kikawada T, Kobayashi Y, Okuda T (2010) Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance. PLoS One 5(11):e14008PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, PA, 576 pGoogle Scholar
  20. Hashimoto T, Kunieda T (2017) DNA protection protein, a novel mechanism of radiation tolerance: lessons from tardigrades. Life 7(2):26PubMedCentralCrossRefGoogle Scholar
  21. Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T, Minakuchi Y, Ohishi K, Motoyama A, Aizu T, Enomoto A, Kondo K, Tanaka S, Hara Y, Koshikawa S, Sagara H, Miura T, Yokobori S-I, Miyagawa K, Suzuki Y, Kubo T, Oyama M, Kohara Y, Fujiyama A, Arakawa K, Katayama T, Toyoda A, Kunieda T (2016) Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat Commun 7:12808PubMedPubMedCentralCrossRefGoogle Scholar
  22. Horikawa DD (2008) The tardigrade Ramazzottius varieornatus as a model animal for astrobiological studies. Biol Sci Space 22(3):93–98CrossRefGoogle Scholar
  23. Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Rad Biol 82:843–848PubMedCrossRefGoogle Scholar
  24. Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8(3):549–556CrossRefGoogle Scholar
  25. Horikawa DD, Yamaguchi A, Sakashita T, Tanaka D, Hamada N, Yukuhiro F, Kuwahara H, Kunieda T, Watanabe M, Nakahara Y, Wada S, Funayama T, Katagiri C, Higashi S, Yokobori S-I, Kuwabara M, Rothschild LJ, Okuda T, Hashimoto H, Kobayashi Y (2012) Tolerance of anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to extreme environments. Astrobiology 12:283–289PubMedCrossRefGoogle Scholar
  26. Horikawa DD, Cumbers J, Sakakibara I, Rogoff D, Leuko S, Harnoto R, Arakawa K, Katayama T, Kunieda T, Toyoda A, Fujiyama A, Rothschild LJ (2013) Analysis of DNA repair and protection in the tardigrade Ramazzottius varieornatus and Hypsibius dujardini after exposure to UVC radiation. PLoS One 8:e64793PubMedPubMedCentralCrossRefGoogle Scholar
  27. Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth: the impact of the physical environment. Academic Press, London, pp 109–127CrossRefGoogle Scholar
  28. Horneck G, Baumstark-Khan C, Facius R (2006) Chap 7: Radiation biology. In: Clément G, Slenzka K (eds) Fundamentals of space biology research on cells, animals, and plants in space. Published jointly by Springer and Microcosm Press, El Segundo, CA, 375 pGoogle Scholar
  29. Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita TK (2004) Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 24(2):899–911PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hygum TL, Clausen LKB, Halberg KA, Jørgensen A, Møbjerg N (2016) Tun formation is not a prerequisite for desiccation tolerance in the marine tidal tardigrade Echiniscoides sigismundi. Zool J Linn Soc 178(4):907–911CrossRefGoogle Scholar
  31. Iwasaki T (1964) Sensitivity of Artemia eggs to the γ-irradiation. I. Hatchability of encysted dry eggs. J Radiat Res 5:69–75PubMedCrossRefGoogle Scholar
  32. Johnson TE, Hartman PS (1988) Radiation effects on life span in Caenorhabditis elegans. J Gerontol 43:B137–B141PubMedCrossRefGoogle Scholar
  33. Johnson AP, Pratt LM, Vishnivetskaya T, Pfiffner S, Bryan RA, Dadachova E, Whyte L, Radtke K, Chan E, Tronick S, Borgonie G, Mancinelli RL, Rothschild LJ, Rogoff DA, Horikawa DD, Onstott TC (2011) Extended survival of several organisms and amino acids under simulated Martian surface conditions. Icarus 211:1162–1178CrossRefGoogle Scholar
  34. Jönsson KI (2003) Causes and consequences of excess resistance in cryptobiotic metazoans. Physiol Biochem Zool 76:429–435PubMedCrossRefGoogle Scholar
  35. Jönsson KI (2007) Tardigrades as a potential model organism in space research. Astrobiology 7:757–766PubMedCrossRefGoogle Scholar
  36. Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol 146:456–460PubMedCrossRefGoogle Scholar
  37. Jönsson KI, Wojcik A (2017) STARLIFE IX: tolerance to X-rays and heavy ions (Fe, He) in the tardigrade Richtersius coronifer and the bdelloid rotifer Mniobia russeola. Astrobiology 17(2):163–167PubMedCrossRefGoogle Scholar
  38. Jönsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the tardigrade Richtersius coronifer. Int J Rad Biol 81:649–656PubMedCrossRefGoogle Scholar
  39. Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731PubMedCrossRefGoogle Scholar
  40. Jönsson KI, Beltrán-Pardo E, Haghdoost S, Wojcik A, Bermúdez-Cruz RM, Bernal Villegas JE, Harms-Ringdahl M (2013) Tolerance to gamma-irradiation in eggs of the tardigrade Richtersius coronifer depends on stage of development. J Limnol 72(s1):73–79Google Scholar
  41. Jönsson KI, Hygum TL, Andersen KN, Clausen LKB, Møbjerg N (2016a) Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi. PLoS One 11(12):e0168884PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jönsson KI, Schill RO, Rabbow E, Rettberg P, Harms-Ringdahl M (2016b) The fate of the TARDIS offspring: no intergenerational effects of space exposure. Zool J Linn Soc 178:924–930CrossRefGoogle Scholar
  43. Kondo K, Kubo T, Kunieda T (2015) Suggested involvement of PP1/PP2A activity and de novo gene expression in anhydrobiotic survival in a tardigrade, Hypsibius dujardini, by chemical genetic approach. PLoS One 10(12):e0144803PubMedPubMedCentralCrossRefGoogle Scholar
  44. Krisko A, Radman M (2013a) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:a012765PubMedPubMedCentralCrossRefGoogle Scholar
  45. Krisko A, Radman M (2013b) Phenotypic and genetic consequences of protein damage. PLoS Genet 9(9):e1003810PubMedPubMedCentralCrossRefGoogle Scholar
  46. Krisko A, Leroy M, Radman M, Meselson M (2012) Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 109(7):2354–2357PubMedCrossRefGoogle Scholar
  47. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9):a012716PubMedPubMedCentralCrossRefGoogle Scholar
  48. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedPubMedCentralCrossRefGoogle Scholar
  49. May RM, Maria M, Guimard J (1964) Actions différentielles des rayons x et Ultraviolets sur le tardigrade Macrobiotus areolatus, à l´état actif et desséché. Bull Biol France Belgique 98:349–367Google Scholar
  50. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684PubMedPubMedCentralCrossRefGoogle Scholar
  51. Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429CrossRefGoogle Scholar
  52. Nicolay NH, Perez RL, Saffrich R, Huber PE (2015) Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget 6(23):19366–19380PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nilsson EJC, Jönsson KI, Pallon J (2010) Tolerance to proton irradiation in the eutardigrade Richtersius coronifer – a nuclear microprobe study. Int J Radiat Biol 86:1–8CrossRefGoogle Scholar
  54. Pandita TK, Higashikubo R, Hunt CR (2004) HSP70 and genomic stability. Cell Cycle 3(5):591–592PubMedCrossRefGoogle Scholar
  55. Parashar V, Frankel S, Lurie AG, Rogina B (2008) The effects of age on radiation resistance and oxidative stress in adult Drosophila melanogaster. Radiat Res 169:707–711PubMedCrossRefGoogle Scholar
  56. Persson D, Halberg KA, Jørgensen A, Ricci C, Møbjerg N, Kristensen RM (2011) Extreme stress tolerance in tardigrades: surviving space conditions in low earth orbit. J Zool Syst Evol Res 49:90–97CrossRefGoogle Scholar
  57. Radman M (2016) Protein damage, radiation sensitivity and aging. DNA Repair 44:186–192PubMedCrossRefGoogle Scholar
  58. Rebecchi L (2013) Dry up and survive: the role of antioxidant defences in anhydrobiotic organisms. J Limnol 72(s1):62–72Google Scholar
  59. Rebecchi L, Altiero T, Guidetti R, Cesari M, Bertolani R, Negroni M, Rizzo AM (2009) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9(6):581–591PubMedCrossRefGoogle Scholar
  60. Rebecchi L, Altiero T, Cesari M, Bertolani R, Rizzo AM, Corsetto PA, Guidetti R (2011) Resistance of the anhydrobiotic eutardigrade Paramacrobiotus richtersi to space flight (LIFE–TARSE mission on FOTON-M3). J Zool Syst Evol Res 49(Suppl 1):98–103CrossRefGoogle Scholar
  61. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21(2):260–291PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rizzo AM, Negroni M, Altiero T, Montorfano G, Corsetto P, Berselli P, Berra B, Guidetti R, Rebecchi L (2010) Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp Biochem Physiol B Biochem Mol Biol 156:115–121PubMedCrossRefGoogle Scholar
  63. Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade. J Zool 276:103–107CrossRefGoogle Scholar
  64. Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, Förster F, Schill RO, Frohme M, Dandekar T, Schnölzer M (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 7:e45682PubMedPubMedCentralCrossRefGoogle Scholar
  65. Thacker J (1999) A surfeit of RAD51-like genes? Trends Genet 15:166–168PubMedCrossRefGoogle Scholar
  66. Wang C, Grohme MA, Mali B, Schill RO, Frohme M (2014) Towards decrypting cryptobiosis - analyzing anhydrobiosis in the tardigrade Milnesium tardigradum using transcriptome sequencing. PLoS One 9(3):e92663PubMedPubMedCentralCrossRefGoogle Scholar
  67. Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006) Biological effects of anhydrobiosis in an African chironomid, Polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592PubMedCrossRefGoogle Scholar
  68. Winter ML, Liehr JG (1991) Free radical-induced carbonyl content in protein of estrogen-treated hamsters assayed by sodium boro[3H]hydrid reduction. J Biol Chem 266:14446–14450PubMedGoogle Scholar
  69. Wright JC (1989) Desiccation tolerance and water-retentive mechanisms in tardigrades. J Exp Biol 142:267–292Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • K. Ingemar Jönsson
    • 1
    Email author
  • Eliana B. Levine
    • 2
    • 3
  • Andrzej Wojcik
    • 4
  • Siamak Haghdoost
    • 5
    • 6
  • Mats Harms-Ringdahl
    • 4
  1. 1.Department of Environmental Science and BioscienceKristianstad UniversityKristianstadSweden
  2. 2.Department of Radiation Oncology, Division of Molecular and Cellular OncologyDavid Geffen school of Medicine at UCLALos AngelesUSA
  3. 3.Colscience InstituteBogotáColombia
  4. 4.Centre for Radiation Protection Research, Department of Molecular BiosciencesThe Wenner-Gren Institute, Stockholm UniversityStockholmSweden
  5. 5.Department of Molecular BiosciencesThe Wenner-Gren Institute, Stockholm UniversityStockholmSweden
  6. 6.LARIA – CIMAPUniversity of CaenCaenFrance

Personalised recommendations